A New Optimization Model for Multiple-Control Toffoli Quantum Circuit Design The 30th International Conference on Principles and Practice of Constraint Programming

Jihye Jung *[jihye.jung@gatech.e](mailto:jihye.jung@gatech.edu)du* **Kevin Dalmeijer** *[dalmeijer@gatech.e](mailto:dalmeijer@gatech.edu)du* **Pascal Van Hentenryck [pvh@gatech.e](mailto:pvh@gatech.edu)du** H. Milton Stewart School of Ind. and Syst. Engineering, Georgia Institute of Technology

1. Introduction (1/3)

Motivation

- Efficient quantum circuit design has become an important area of quantum computing to mitigate current hardware errors.
- *Primary challenge*: To implement a target function using gates from a preset gate library to minimize the circuit costs according to a given metric.
- Our problem scope:
	- **A. Target function ─ Reversible Boolean function**
		- : A key component that embeds the input data in most quantum algorithms.
	- **B. Preset gate library ─ Multiple-Control Toffoli (MCT) gate** : A typical high-level gate commonly used to represent reversible Boolean functions.
	- **C. Circuit cost metric ─ Quantum cost**

: The number of low-level quantum gates required to realize the high-level gates in the circuit.

1. Introduction (2/3)

Previous Studies

- Algorithms utilizing preconfigured circuit templates and post-synthesis
- Algorithms leveraging on representations of reversible Boolean functions : e.g., Cycle representation, Reed-Muller expansion
- Various heuristic algorithms
	- Quantum multiple-valued decision diagram, A* algorithm, Isomorphic subgraph matching
	- Genetic algorithm, Genetic programming, Tabu search, Particle swarm optimization

• **Exact algorithms that guarantee optimality for given evaluating metrics**

- Iterative satisfiability problems, Quantified Boolean formula satisfiability ⇒ To minimize the number of high-level gates
- Mixed-integer programming
	- \Rightarrow To minimize the total costs of high-level logical gates (= the number of low-level gates)

1. Introduction (3/3)

Contributions

- A new optimization model and new symmetry-breaking constraints.
	- : Significantly expedites the solving with both CP and MIP solvers with up to two orders of magnitude speedup when the CP solver is used.
- Experiments with up to seven qubits and using up to 15 quantum gates.
- Several new best-known circuits for well-known benchmarks.
- Extensive comparison with other synthesis approaches.
	- : Shows that optimization approaches may require more time but can provide superior circuits with guaranteed optimality.

2. Terminologies (1/4)

A. Qubits

- Analogous to classical bits in classical computers.
- Classical bits assume values of 0 or 1 to define a single basis state (i.e., a binary vector).
- Qubits store superposed states (i.e., a complex vector) formed as a convex combination of the basis states.

B. Quantum Gates

- Operates on qubits to transition the system to a new state based on the specification.
- Not every state transition can be realized by a single elementary gate.
- Multiple quantum gates may be combined into a quantum circuit to represent more complicated functions.

2. Terminologies (2/4)

C. Reversible Boolean Function

- A bijective function where inputs and outputs are provided as binary strings of fixed length (i.e., typically, the number of qubits in the system).
- Considered fundamental operators in quantum computing.
- Corresponds to a unique permutation.
- Some instances are incompletely specified with *don't care* qubits ('-').

2. Terminologies (3/4)

D. Multiple Control Toffoli (MCT) Circuit

- MCT circuits consist of a sequence of MCT gates**.**
- One target qubit (⊕ symbol) + zero or more control qubits (• symbol). *If all the control qubits are in state 1, then the target qubit flips the input state.*
- Control qubits do not have to be adjacent.
- A vertical line connect the control qubits to the target qubit.
- Example implementation

2. Terminologies (4/4)

E. Quantum Costs

- Each MCT gate is decomposed into elementary quantum gates.
- The number of elementary quantum gates is a well-established proxy for the cost of the MCT circuit, known as the quantum cost.
- Quantum cost $f(c)$ for an MCT gate that uses a total of $c \ge 0$ control qubits.

3. Problem Description (1/2)

A. Circuit Design

- Set of qubits $Q = \{1, ..., n\}$ / Set of gates $D = \{1, ..., m\}$
- t_q^d and w_q^d : Binary variables that indicate whether (q, d) contains a target or control qubit

B. Quantum Costs

- An MCT gate with $c \ge 0$ control qubits incurs a quantum cost of $f(c)$
- y_j^d : A binary indicator that takes value one if gate $d \in D$ contains exactly $j \in Q$ target and control qubits, or zero otherwise.

C. Flow Networks

• Indicates which state transitions are available depending on the design of the circuit **Case 1:** Gate d flips some qubit $\overline{q} \in Q$ $\boxed{\overline{q}}$ is the target qubit **] AND** $\boxed{\overline{q}}$ None of the controls are on qubits with value 0 in state σ **Case 2:** Gate d keeps state σ the same.

[No target qubit **] OR** [A target qubit \bar{q} , but at least one of the controls is on a zero state]

3. Problem Description (2/2)

C. Flow Networks (Cont'd)

- **Example:** Input state **010** → Output state **11**⎼
	- Gate $d = 1$ carries out the transition 010 \rightarrow 110, i.e., vertex (010, 1) to (110, 2)
	- Gate $d = 2$ carries out the transition $110 \rightarrow 111$, i.e., vertex (110, 2) to (111, 3)
- A total transition of **010 → 111**: Aligning with output specification **11-** (110 or 111)

Georgia
Tech

4. Optimization Model

min $\sum_{d \in D} \sum_{j \in Q} f(j-1)y_j^d$, $\label{eq:2.1} \begin{aligned} \epsilon Q \qquad \qquad t_q^d + w_q^d &\leq 1 & \qquad \qquad \forall q \in Q, d \in D, \\ \sum_{q \in Q} t_q^d &\leq 1 & \qquad \forall d \in D, \\ w_q^d &\leq \sum_{r \in Q} t_r^d & \qquad \qquad \forall q \in Q, d \in D, \end{aligned}$ s.t. $\sum_{j\in Q}j y_j^d = \sum_{q\in Q}t_q^d + \sum_{q\in Q}w_q^d \qquad \forall d\in D,$ $\sum_{j \in Q} y_j^d \le 1$ $\forall d \in D,$ $\sum_{a\in\delta_k^+(v)} x_a^k - \sum_{a\in\delta_k^-(v)} x_a^k = \begin{cases} |\Omega_k^{in}| & \text{ if } v=S\\ -|\Omega_k^{in}| & \text{ if } v=T \quad \forall k\in K, v\in V,\\ 0 & \text{ else} \end{cases}$ $\bigvee_{q^0 \in Q^0_{\sigma(a)}} \left(w^{d(a)}_{q^0} = 1 \right) \bigvee \left(t^{d(a)}_{q(a)} = 0 \right) \Longrightarrow x^k_a = 0 \quad \forall k \in K, a \in A^{flip}_k,$
 $\bigwedge_{q^0 \in Q^0_{\sigma(a)}} \left(w^{d(a)}_{q^0} = 0 \right) \bigwedge \left(\sum_{q \in Q} t^{d(a)}_q = 1 \right) \Longrightarrow x^k_a = 0 \quad \forall k \in K, a \in A^{keep}_k,$
 $\bigwedge_{q^0 \in Q^0_{\sigma(a)}} \left(w^{d(a)}_{q^0} = 0$ $\begin{aligned} t^d_q, w^d_q, y^d_j &\in \{0,1\} && \forall q, j \in Q, d \in D,\\ x^k_a &\in \{0,1\} && \forall k \in K, a \in A_k. \end{aligned}$

Objective (Minimize Quantum Cost)

- **Circuit Design**
- $(1c)$
- $(1d)$
- **Quantum Cost**
- $(1f)$

Flow Networks

Binary Variables $(1k)$

5. Symmetry-Breaking Constraints

Gate Swaps for Symmetry-Breaking

- Swap 1 (*Empty gate.*) If gate d is empty and $d + 1$ is full, then swap two gates.
- Swap 2 (*Different target.*) If the target qubit q of gate d is at a higher line than the target qubit r of gate $d + 1$ ($q > r$), and the target qubits do not neighbor a control qubit in each other gates, then swap two gates.
- Swap 3 (*Same Target.*) If gate d and gate $d + 1$ have the same target qubit and gate d has fewer control bits, then swap the two gates.

$$
\sum_{q \in Q} t_q^d \ge \sum_{q \in Q} t_q^{d+1} \qquad \qquad \forall d \in D,\tag{3a}
$$

$$
t_q^d + t_r^{d+1} \le 1 + w_q^{d+1} + w_r^d \qquad \qquad \forall d \in D, q, r \in Q, q > r,
$$
 (3b)

$$
\sum_{r \in Q} w_r^d - \sum_{r \in Q} w_r^{d+1} \ge (n-1)(t_q^d + t_q^{d+1} - 2) \quad \forall d \in D, q \in Q.
$$
 (3c)

6. Computational Experiments (1/7)

Experiment Settings

- **Language:** Python 3.11
- **OS/Machine:** Linux / Dual Intel Xeon Gold 6226 CPUs (24 cores in total) / PACE Phoenix cluster
- **CP Solver:** CP-SAT 9.8.3296 with 24 workers (threads)
- **MIP Solver:** Gurobi 11.0.0
- **Instances:** RevLib (Wille et al., 2008) ** 49 functions with up to seven qubits that have known circuit implementations in fewer than 100 gates*
- **Time limit:** 3600 seconds per instance

Robert Wille, Daniel Große, Lisa Teuber, Gerhard W. Dueck, and Rolf Drechsler. RevLib: An Online Resource for Reversible Functions and Reversible Circuits. In International Symposium on Multiple-Valued Logic, pages 220–225, 2008. URL: http://www.revlib.org, doi:10.1109/ismvl.2008.43.

6. Computational Experiments (2/7)

Performance New Optimization Model (vs. MIP)

- The new optimization model completely outperforms previous work.
- Even accounting for the difference in hardware (6 cores vs. 24 cores), the new model is an order of magnitude faster when solved with the MIP solver.

[13] Jihye Jung and In-Chan Choi. A multi-commodity network model for optimal quantum reversible circuit synthesis. PLOS ONE, 16(6):e0253140, 2021. doi:10.1371/journal.pone.0253140.

6. Computational Experiments (3/7)

Performance New Model with CP on Large Instances

- All instances with up to $m = 7$ gates can now be solved in a matter of minutes on average.
- Average runtime rises sharply at $m = 8$.
- More work remains to be done to solve the largest instances.

6. Computational Experiments (4/7)

Performance New Optimization Model with CP on Large Instances

- The final solution status (*infeasible*, *optimal*, *suboptimal*, or *timeout*) for each of the instances.
- If no circuit is found, or if optimality cannot be proven within the time limit, then the time limit is reported as the runtime.

6. Computational Experiments (5/7)

Effect of Symmetry-Breaking Constraints

- For $m \geq 8$ gates, the difference in solvability becomes apparent.
- Out of the largest instances with $m = 15$ gates, only one instance can be solved without breaking symmetries, while 13 instances can be solved when the constraints are included.
- Our symmetry-breaking constraints outperforms the built-in symmetry detection in CP-SAT.

6. Computational Experiments (6/7)

Comparative Analysis: Five benchmark studies selected

- Studies that propose synthesis for the entire circuit from scratch
- Studies that report quantum cost and computation time for every experiment
- Studies where the benchmark suite overlaps significantly with our work.

6. Computational Experiments (7/7)

Comparative Analysis

- *Time-Quantum cost* plane : i.e., lower-left bubbles implies best performance
- Size of each bubble : The number of qubits used
- Upper-right blue box : CP performs the best
- Blue-faced circles
	- : Optimality proven

7. Ongoing Future Works

- To apply the decomposition method to utilize the decomposable structure of the new model.
- To extend the optimization model to different high-level gate libraries.
- To directly optimize over elementary quantum gates instead of high-level gates.

Thank you for listening

Appendix: Nomenclature

Symbol Definition Circuit Design: $(1b)-(1d)$, $(1j)$ $=\{1,\ldots,n\}$ set of qubits. Q_D $=\{1,\ldots,m\}$ set of gates. t_q^d variable with value 1 if qubit $q \in Q$ is the target qubit of gate $d \in D$, and 0 otherwise. variable with value 1 if qubit $q \in Q$ is a control qubit of gate $d \in D$, and 0 otherwise. w_q^d Quantum Cost: $(1a)$, $(1e)$ - $(1f)$, $(1j)$ $f(c)$ quantum cost of a single MCT gate with $c \geq 0$ control qubits. variable with value 1 if gate $d \in D$ consists of a total of $j \in Q$ target and control y_i^a qubits, zero otherwise. Quantum States and Flow Commodities: $(1g)-(1i)$, $(1k)$ Ω $= \{0_{(2)}, \ldots, (2^{n} - 1)_{(2)}\}$ set of pure quantum states. $=\{q \in Q : \sigma_q = 0\}$ set of qubits that are zero in state $\sigma \in \Omega$.
set of indices of the flow commodities; each commodity represents a set of input Q^0_σ quantum states that have the same (possibly incomplete) output specification. Ω_k^{in} $\subseteq \Omega$ set of input quantum states that represent commodity $k \in K$; together the sets Ω_k^{in} $\forall k \in K$ provide a partition of Ω . Ω_k^{out} $\subseteq \Omega$ set of quantum states that meet the (possibly incomplete) output specification associated with commodity $k \in K$; the sets Ω_k^{out} may overlap, and together cover Ω . Flow Networks: $(1g)-(1i)$, $(1k)$ set of vertices in each flow network; consists of source S, sink T, and nodes (σ, d) \mathbf{V} $\forall \sigma \in \Omega, d \in D \cup \{m+1\}.$ set of arcs in the flow network of commodity $k \in K$. A_k A_k^{flip} $\subset A_k$ set of arcs for commodity $k \in K$ that represent a transition that flips a qubit. $A_k^k e e p$ $\subset A_k$ set of arcs for $k \in K$ that represent a transition that keeps the state the same. x_a^k variable with value 1 if commodity $k \in K$ uses arc $a \in A_k$, and 0 otherwise. $\delta_k^+(v)$ $\subset A_k$ set of arcs for $k \in K$ coming out of vertex $v \in V$. $\delta_k^-(v)$ $\subseteq A_k$ set of arcs for $k \in K$ coming into vertex $v \in V$. $\overline{A} \in D$ shorthand for the gate associated with arc $a \in A_k^{flip} \cup A_k^{keep}$. $d(a)$ $\in Q$ shorthand for the qubit that is flipped by arc $a \in A_k^{flip}$.
 $\in \Omega$ shorthand for the state that arc $a \in A_k^{step} \cup A_k^{keep}$ transitions from. $q(a)$ $\sigma(a)$

Appendix: Optimization Model

Comparison to Previous Optimization Study (Jung and Choi, 2022)

- A. Number of cases specified for state transition
	- Previous Study: Four cases depending on the number of target qubits/control qubits.
	- New model: Captures all cases withstate transition.
- B. How the circuit is connected to opening and closing the flow arcs
	- Previous Study: $O(2nm)$ binary variables identifying whether the gate modifies state σ gate for each state $\sigma \in \Omega$ and gate $d \in D$.
	- New model: A much more direct way to close arcs through improved constraints, resulting in fewer variables and decomposable constraint structure. *(*A block-angular structure may be exploited by decomposition methods in future work*)

Jihye Jung and In-Chan Choi. A multi-commodity network model for optimal quantum reversible circuit synthesis. PLOS ONE, 16(6):e0253140, 2021. doi:10.1371/journal.pone.0253140.

Appendix: Symmetry-Breaking

Proposition on Symmetry-Breaking

Any swappable circuit can be turned into *an unswappable circuit* by repeatedly applying the defined Swap 1, 2, and 3.

Appendix: New Best-Known Circuits

Quantum cost: 47 Optimality proven: X

decod24-enable $m = 6$ Quantum cost: 18 Optimality proven: O

one-two-three-v1 = 8 antum cost: 16 Optimality proven: O

Quantum cost: 30 Optimality proven: X **one-two-three-v0**

 $m = 9$ Quantum cost: 17 Optimality proven: X

one-two-three-v3

 $m = 9$ Quantum cost: 17 Optimality proven: X

Georgia
Tech