The 30th International Conference on Principles and Practice of Constraint Programming A New Optimization Model for Multiple-Control Toffoli Quantum Circuit Design

Jihye Jung jihye.jung@gatech.edu Kevin Dalmeijer <u>dalmeijer@gatech.edu</u> Pascal Van Hentenryck <u>pvh@gatech.edu</u> H. Milton Stewart School of Ind. and Syst. Engineering, Georgia Institute of Technology

1. Introduction (1/3)

Motivation

- Efficient quantum circuit design has become an important area of quantum computing to mitigate current hardware errors.
- *Primary challenge*: To implement a target function using gates from a preset gate library to minimize the circuit costs according to a given metric.
- Our problem scope:
 - A. Target function Reversible Boolean function
 - : A key component that embeds the input data in most quantum algorithms.
 - **B.** Preset gate library Multiple-Control Toffoli (MCT) gate : A typical high-level gate commonly used to represent reversible Boolean functions.
 - C. Circuit cost metric Quantum cost

: The number of low-level quantum gates required to realize the high-level gates in the circuit.

1. Introduction (2/3)

Previous Studies

- Algorithms utilizing preconfigured circuit templates and post-synthesis
- Algorithms leveraging on representations of reversible Boolean functions
 : e.g., Cycle representation, Reed-Muller expansion
- Various heuristic algorithms
 - Quantum multiple-valued decision diagram, A* algorithm, Isomorphic subgraph matching
 - Genetic algorithm, Genetic programming, Tabu search, Particle swarm optimization

• Exact algorithms that guarantee optimality for given evaluating metrics

- Iterative satisfiability problems, Quantified Boolean formula satisfiability \Rightarrow To minimize the number of high-level gates
- Mixed-integer programming
 - ⇒ To minimize the total costs of high-level logical gates (= the number of low-level gates)

1. Introduction (3/3)

Contributions

- A new optimization model and new symmetry-breaking constraints.
 - : Significantly expedites the solving with both CP and MIP solvers with up to <u>two orders of</u> <u>magnitude speedup when the CP solver is used</u>.
- Experiments with up to seven qubits and using up to 15 quantum gates.
- Several new best-known circuits for well-known benchmarks.
- Extensive comparison with other synthesis approaches.
 - : Shows that optimization approaches may require more time but can provide superior circuits with guaranteed optimality.

2. Terminologies (1/4)

A. Qubits

- Analogous to classical bits in classical computers.
- Classical bits assume values of 0 or 1 to define a single basis state (i.e., a binary vector).
- Qubits store superposed states (i.e., a complex vector) formed as a convex combination of the basis states.

B. Quantum Gates

- Operates on qubits to transition the system to a new state based on the specification.
- Not every state transition can be realized by a single elementary gate.
- Multiple quantum gates may be combined into a quantum circuit to represent more complicated functions.

2. Terminologies (2/4)

C. Reversible Boolean Function

- A bijective function where inputs and outputs are provided as binary strings of fixed length (i.e., typically, the number of qubits in the system).
- Considered fundamental operators in quantum computing.
- Corresponds to a unique permutation.
- Some instances are incompletely specified with *don't care* qubits ('-').

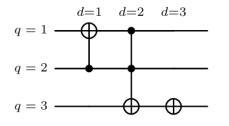
[Co	ompletely	y Speci	fied]			[In	complete	ly Spec	cified]	
Input	Output	Input	Output		Input	Output	Impl. 2b	Input	Output	Impl. 2b
000	001	100	101		000	00-	001	100	101	101
001	000	101	100		001	00-	000	101	100	100
010	110	110	011		010	11-	111	110	011	011
011	111	111	010	_	011		110	111	010	010

2. Terminologies (3/4)

D. Multiple Control Toffoli (MCT) Circuit

- MCT circuits consist of a sequence of MCT gates.
- One target qubit (
 symbol) + zero or more control qubits (• symbol).
 If all the control qubits are in state 1, then the target qubit flips the input state.
- Control qubits do not have to be adjacent.
- A vertical line connect the control qubits to the target qubit.
- Example implementation

Input	Output	Input	Output
000	001	100	101
001	000	101	100
010	110	110	011
011	111	111	010



2. Terminologies (4/4)

E. Quantum Costs

- Each MCT gate is decomposed into elementary quantum gates.
- The number of elementary quantum gates is a well-established proxy for the cost of the MCT circuit, known as the quantum cost.
- Quantum cost f(c) for an MCT gate that uses a total of $c \ge 0$ control qubits.

	Control qubits p								
Slack qubits	0	1	2	3	4	5	6	≤ 7	d=1 $d=2$ $d=3$
0	1	1	5	13	29	62	125	$2^{p+1} - 3$	q = 1
1	•	•	•			52	80		q = 2
2	•	•	•		26	•			$q = 3$ \bigcirc
3			•		•	38			
≤ 4	•	•	•				50		Total 1 + 5 + 1 =

3. Problem Description (1/2)

A. Circuit Design

- Set of qubits $Q = \{1, ..., n\}$ / Set of gates $D = \{1, ..., m\}$
- t_q^d and w_q^d : Binary variables that indicate whether (q, d) contains a target or control qubit

B. Quantum Costs

- An MCT gate with $c \ge 0$ control qubits incurs a quantum cost of f(c)
- y_j^d : A binary indicator that takes value one if gate $d \in D$ contains exactly $j \in Q$ target and control qubits, or zero otherwise.

C. Flow Networks

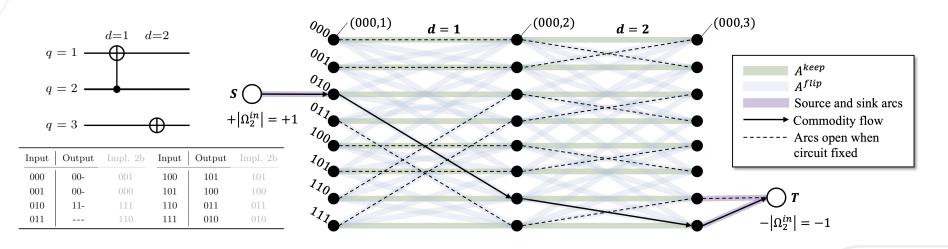
Indicates which state transitions are available depending on the design of the circuit Case 1: Gate *d* flips some qubit *q* ∈ *Q*[*q* is the target qubit] AND [None of the controls are on qubits with value 0 in state *σ*]
Case 2: Gate *d* keeps state *σ* the same.

[No target qubit] **OR** [A target qubit \bar{q} , but at least one of the controls is on a zero state]

3. Problem Description (2/2)

C. Flow Networks (Cont'd)

- **Example:** Input state $010 \rightarrow \text{Output state } 11-$
 - Gate d = 1 carries out the transition $010 \rightarrow 110$, i.e., vertex (010, 1) to (110, 2)
 - Gate d = 2 carries out the transition $110 \rightarrow 111$, i.e., vertex (110, 2) to (111, 3)
- A total transition of $010 \rightarrow 111$: Aligning with output specification 11- (110 or 111)



Georgia Tech

9/22

4. Optimization Model

min $\sum_{d \in D} \sum_{j \in Q} f(j-1)y_j^d$,
$$\begin{split} t^d_q + w^d_q &\leq 1 & \forall q \in Q, d \in D, \\ \sum_{q \in Q} t^d_q &\leq 1 & \forall d \in D, \\ w^d_q &\leq \sum_{r \in Q} t^d_r & \forall q \in Q, d \in D, \end{split}$$
 $t_q^d + w_q^d \le 1$ s.t. $\sum_{j \in Q} jy_j^d = \sum_{q \in Q} t_q^d + \sum_{q \in Q} w_q^d \qquad \forall d \in D,$ $\sum_{j \in Q} y_j^d \le 1 \qquad \forall d \in D, \qquad (1f)$ $\sum_{a \in \delta_k^+(v)} x_a^k - \sum_{a \in \delta_k^-(v)} x_a^k = \begin{cases} |\Omega_k^{in}| & \text{if } v = S \\ -|\Omega_k^{in}| & \text{if } v = T \\ 0 & \text{else} \end{cases} \forall k \in K, v \in V, \qquad (1g) \text{ Flow Networks}$ $\lim_{a \in a \in \delta_k^-(v)} (w_q^{d(a)} = 1) \bigvee (t_{q(a)}^{d(a)} = 0) \Longrightarrow x_a^k = 0 \quad \forall k \in K, a \in A_k^{flip}, \qquad (1h) \qquad x_a^k \le t_{q(a)}^{d(a)} \qquad \forall k \in K, a \in A_k^{flip}, q^0 \in Q_{\sigma(a)}^0, \qquad (x_a^k \le 1 - w_{q^0}^{d(a)}) \qquad \forall k \in K, a \in A_k^{flip}, q^0 \in Q_{\sigma(a)}^0, \qquad (x_a^k \le 1 - \sum_{q \in Q} t_{q(a)}^{d(a)} + \sum_{q^0 \in Q_{\sigma(a)}^0} w_{q^0}^{d(a)} \quad \forall k \in K, a \in A_k^{keep}. \qquad (1i) \text{ Binarv Variables}$ $\sum_{j \in Q} y_j^d \le 1 \qquad \qquad \forall d \in D,$ $\begin{aligned} t^d_q, w^d_q, y^d_j &\in \{0, 1\} \\ x^k_a &\in \{0, 1\} \end{aligned} \qquad & \forall q, j \in Q, d \in D, \\ \forall k \in K, a \in A_k. \end{aligned}$

(1a) **Objective** (Minimize Quantum Cost)

(1b) Circuit Design

(1c)

- (1d)
- (1e) Quantum Cost

(1j) Binary Variables (1k)

5. Symmetry-Breaking Constraints

Gate Swaps for Symmetry-Breaking

- Swap 1 (*Empty gate.*) If gate d is empty and d + 1 is full, then swap two gates.
- Swap 2 (*Different target.*) If the target qubit q of gate d is at a higher line than the target qubit r of gate d + 1 (q > r), and the target qubits do not neighbor a control qubit in each other gates, then swap two gates.
- Swap 3 (Same Target.) If gate d and gate d + 1 have the same target qubit and gate d has fewer control bits, then swap the two gates.

$$\sum_{q \in Q} t_q^d \ge \sum_{q \in Q} t_q^{d+1} \qquad \quad \forall d \in D,$$
(3a)

$$t_q^d + t_r^{d+1} \le 1 + w_q^{d+1} + w_r^d \qquad \qquad \forall d \in D, q, r \in Q, q > r,$$
(3b)

$$\sum_{r \in Q} w_r^d - \sum_{r \in Q} w_r^{d+1} \ge (n-1)(t_q^d + t_q^{d+1} - 2) \quad \forall d \in D, q \in Q.$$
(3c)

6. Computational Experiments (1/7)

Experiment Settings

- Language: Python 3.11
- OS/Machine: Linux / Dual Intel Xeon Gold 6226 CPUs (24 cores in total) / PACE Phoenix cluster
- CP Solver: CP-SAT 9.8.3296 with 24 workers (threads)
- MIP Solver: Gurobi 11.0.0
- Instances: RevLib (Wille et al., 2008)
 * 49 functions with up to seven qubits that have known circuit implementations in fewer than 100 gates
- Time limit: 3600 seconds per instance

Robert Wille, Daniel Große, Lisa Teuber, Gerhard W. Dueck, and Rolf Drechsler. RevLib: An Online Resource for Reversible Functions and Reversible Circuits. In International Symposium on Multiple-Valued Logic, pages 220–225, 2008. URL: http://www.revlib.org, doi:10.1109/ismvl.2008.43.

6. Computational Experiments (2/7)

Performance New Optimization Model (vs. MIP)

- The new optimization model completely outperforms previous work.
- Even accounting for the difference in hardware (6 cores vs. 24 cores), the new model is an order of magnitude faster when solved with the MIP solver.

	A	Average R	untime (s	Solved Instances			
	m = 6	m = 7	m = 8	Limit	m = 6	m = 7	m = 8
[13] (MIP)	$6,\!614$	$21,\!126$	$29,\!895$	36,000	36/38	20/38	7/38
New Model (MIP)	160	1252	2541	$3,\!600$	38/38	38/38	15/38
New Model (CP)	12	115	1193	$3,\!600$	38/38	38/38	28/38

[13] Jihye Jung and In-Chan Choi. A multi-commodity network model for optimal quantum reversible circuit synthesis. PLOS ONE, 16(6):e0253140, 2021. doi:10.1371/journal.pone.0253140.

6. Computational Experiments (3/7)

Performance New Model with CP on Large Instances

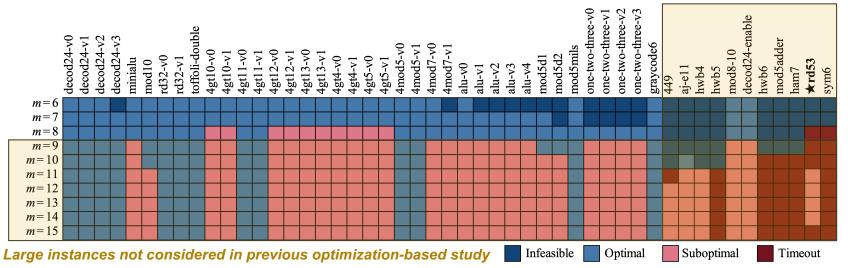
- All instances with up to m = 7 gates can now be solved in a matter of minutes on average.
- Average runtime rises sharply at m = 8.
- More work remains to be done to solve the largest instances.

	m = 6	m = 7	m = 8	m = 9	m = 10
Average Runtime (s) Solved Instances	$14 \\ 49/49$	$111 \\ 49/49$	$1,101 \\ 37/49$	$2,140 \\ 23/49$	$2,502 \\ 18/49$
	m = 11	m = 12	m = 13	m = 14	m = 15
Average Runtime (s) Solved Instances	2,754 13/49	2,757 13/49	2,753 13/49	2,761 13/49	2,758 13/49

6. Computational Experiments (4/7)

Performance New Optimization Model with CP on Large Instances

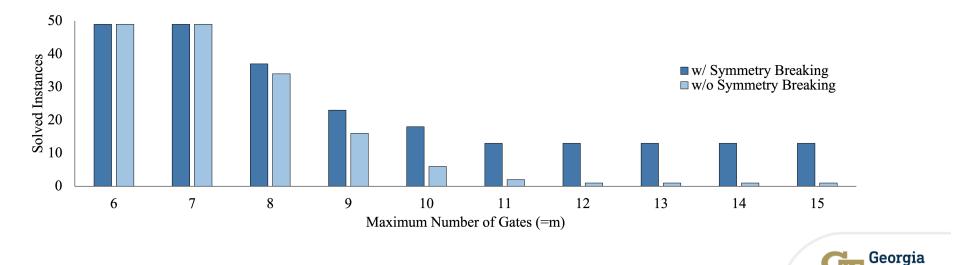
- The final solution status (infeasible, optimal, suboptimal, or timeout) for each of the instances.
- If no circuit is found, or if optimality cannot be proven within the time limit, then the time limit is reported as the runtime.



6. Computational Experiments (5/7)

Effect of Symmetry-Breaking Constraints

- For $m \ge 8$ gates, the difference in solvability becomes apparent.
- Out of the largest instances with m = 15 gates, only one instance can be solved without breaking symmetries, while 13 instances can be solved when the constraints are included.
- Our symmetry-breaking constraints outperforms the built-in symmetry detection in CP-SAT.



16/19

6. Computational Experiments (6/7)

Comparative Analysis: Five benchmark studies selected

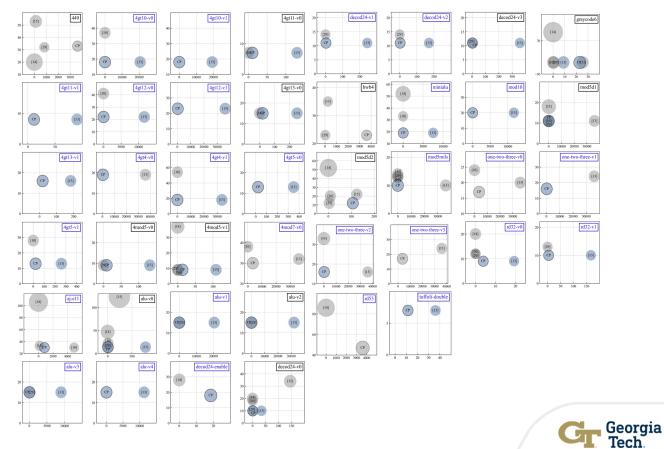
- Studies that propose synthesis for the entire circuit from scratch
- Studies that report quantum cost and computation time for every experiment
- Studies where the benchmark suite overlaps significantly with our work.

Paper	Method	Objective	Type	Gate Lib.	Max Time
[15]	Reed-Muller + decision diagram	Gate count	Heuristic	MCT	600s
[14]	Subgraph matching + decision diagram	Qubit count	Heuristic	MCT up to two controls	<1s
[10]	Satisfiability problem	Gate count	Exact	MCT	5,000s
[29]	Quantified Boolean satisfiability problem	Gate count	Exact	MCT	2,000s
[13]	Optimization model + MIP solver	Quantum cost	Exact	MCT	36,000s
Current	Optimization model + CP solver	Quantum cost	Exact	MCT	3,600s

6. Computational Experiments (7/7)

Comparative Analysis

- *Time-Quantum cost* plane : i.e., lower-left bubbles implies best performance
- Size of each bubble
 The number of qubits used
- Upper-right blue box
 CP performs the best
- Blue-faced circles : Optimality proven



18/19

7. Ongoing Future Works

- To apply the decomposition method to utilize the decomposable structure of the new model.
- To extend the optimization model to different high-level gate libraries.
- To directly optimize over elementary quantum gates instead of high-level gates.

Thank you for listening

Appendix: Nomenclature

Symbol Definition Circuit Design: (1b)-(1d), (1j) $= \{1, \ldots, n\}$ set of qubits. $\substack{Q\\D}$ $= \{1, \ldots, m\}$ set of gates. t_q^d variable with value 1 if qubit $q \in Q$ is the target qubit of gate $d \in D$, and 0 otherwise. variable with value 1 if qubit $q \in Q$ is a control qubit of gate $d \in D$, and 0 otherwise. w_q^d Quantum Cost: (1a), (1e)-(1f), (1j) f(c)quantum cost of a single MCT gate with $c \ge 0$ control qubits. variable with value 1 if gate $d \in D$ consists of a total of $j \in Q$ target and control y_i^a qubits, zero otherwise. Quantum States and Flow Commodities: (1g)-(1i), (1k) Ω $= \{0_{(2)}, \ldots, (2^n - 1)_{(2)}\}$ set of pure quantum states. = $\{q \in Q : \sigma_q = 0\}$ set of qubits that are zero in state $\sigma \in \Omega$. set of indices of the flow commodities; each commodity represents a set of input Q^0_{σ} Kquantum states that have the same (possibly incomplete) output specification. Ω_{k}^{in} $\subseteq \Omega$ set of input quantum states that represent commodity $k \in K$; together the sets $\Omega_k^{in} \ \forall k \in K$ provide a partition of Ω . Ω_k^{out} $\subset \Omega$ set of quantum states that meet the (possibly incomplete) output specification associated with commodity $k \in K$; the sets Ω_k^{out} may overlap, and together cover Ω . Flow Networks: (1g)-(1i), (1k) set of vertices in each flow network; consists of source S, sink T, and nodes (σ, d) V $\forall \sigma \in \Omega, d \in D \cup \{m+1\}.$ set of arcs in the flow network of commodity $k \in K$. A_k A_{μ}^{flip} $\subset A_k$ set of arcs for commodity $k \in K$ that represent a transition that flips a qubit. A_{l}^{keep} $\subset A_k$ set of arcs for $k \in K$ that represent a transition that keeps the state the same. x_a^k variable with value 1 if commodity $k \in K$ uses arc $a \in A_k$, and 0 otherwise. $\delta_k^+(v)$ $\subseteq A_k$ set of arcs for $k \in K$ coming out of vertex $v \in V$. $\subseteq A_k$ set of arcs for $k \in K$ coming into vertex $v \in V$. $\delta_k^-(v)$ $\in D$ shorthand for the gate associated with arc $a \in A_k^{flip} \cup A_k^{keep}$. d(a) $\in Q$ shorthand for the qubit that is flipped by arc $a \in A_{k}^{flip}$. $\in \Omega$ shorthand for the state that arc $a \in A_{k}^{flip} \cup A_{k}^{keep}$ transitions from. q(a) $\sigma(a)$

Appendix: Optimization Model

Comparison to Previous Optimization Study (Jung and Choi, 2022)

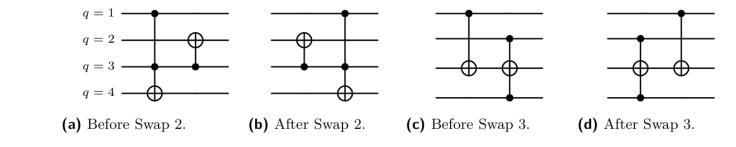
- A. Number of cases specified for state transition
 - Previous Study: Four cases depending on the number of target qubits/control qubits.
 - New model: Captures all cases withstate transition.
- B. How the circuit is connected to opening and closing the flow arcs
 - Previous Study: O(2nm) binary variables identifying whether the gate modifies state σ gate for each state $\sigma \in \Omega$ and gate $d \in D$.
 - New model: A much more direct way to close arcs through improved constraints, resulting in fewer variables and decomposable constraint structure. (*A block-angular structure may be exploited by decomposition methods in future work)

Jihye Jung and In-Chan Choi. A multi-commodity network model for optimal quantum reversible circuit synthesis. PLOS ONE, 16(6):e0253140, 2021. doi:10.1371/journal.pone.0253140.

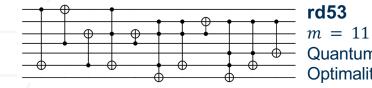
Appendix: Symmetry-Breaking

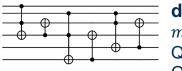
Proposition on Symmetry-Breaking

Any swappable circuit can be turned into *an unswappable circuit* by repeatedly applying the defined Swap 1, 2, and 3.



Appendix: New Best-Known Circuits



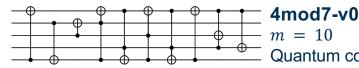


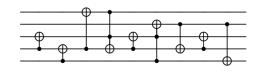
	Φ.	$-\Phi$	ا ۲	- O
	$-\Psi$			- m
-	$- \bullet - \bullet$	$ \rightarrow $	<u> </u>	
I		_	(₽ Q

Quantum cost: 47 Optimality proven: X

```
decod24-enable
m = 6
Quantum cost: 18
Optimality proven: O
```

one-two-three-v1 m = 8Quantum cost: 16 Optimality proven: O





m = 10Quantum cost: 30 Optimality proven: X

one-two-three-v0 m = 9Quantum cost: 17 Optimality proven: X

one-two-three-v3

m = 9Quantum cost: 17 Optimality proven: X

