The 30th International Conference on Principles and Practice of Constraint Programming, Girona, Spain

An Efficient Local Search Solver for Mixed Integer Programming

Peng Lin⁴, Mengchuan Zou, and Shaowei Cai*

Institute of Software, Chinese Academy of Sciences, Beijing, China

School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing, China

{<u>linpeng</u>, <u>zoumc</u>, <u>caisw</u>}@ios.ac.cn

2024.09.04

🕂 Presenter

University of Chinese Academy of Sciences

09/04, 2024

An Efficient Local Search Solver for Mixed Integer Programming

P. Lin, M. Zou, and S. Cai

* Corresponding author

Outline

Background

- Mixed Integer Programming
- Local Search

Local-MIP

- Tailored Operators
- Weighting Scheme
- Two-level Scoring Function Structure
- Search Process of Local-MIP

Experiments

- Comparison with SOTA Solvers
- New Records to Open Instances

Mixed Integer Programming

- Solution s : values assigned for each variable
 - s_j : the value of x_j
- Feasible solution ⇔ satisfies all constraints
- Lower objective value indicates higher quality

Mixed Integer Programming

Powerful Expressive Ability

Traveling Salesman Problem

Bin Packing

Many Graph Problems

Extensive Practical Applications

An Efficient Local Search Solver for Mixed Integer Programming

Classical Algorithms for MIP

Branch-and-Bound

Branch-and-Cut

State-of-the-art MIP Solvers

Academic/Open-source Solvers

Commercial Solvers

Gurobi https://www.gurobi.com/ **IBM CPLEX**

CPLEX https://www.ibm.com/products/ilo g-cplex-optimization-studio

Xpress https://www.fico.com/en/product s/fico-xpress-optimization COPT Cardinal Optimizer

COPT https://www.shanshu.ai/copt/

- Almost all state-of-the-art MIP solvers are based on the branch-and-cut framework
- Note
 - SCIP and HiGHS are the top two academic solvers
 - Overall, Gurobi is the most powerful in most cases.

Local search is an efficient heuristic method for solving NP hard problems

Find high-quality solutions quickly

L High-quality solutions are good usability in practice

- Search space S : define the neighborhood relation $N \subseteq S \times S$
- Operator : define how to modify variables to generate candidate solutions, characterizing neighborhood
- Scoring functions: evaluate different candidate solutions to update the current solution

Local Search Process

• Starting from a initial solution

Local Search

• Iteratively performing neighbor operation until time limit

Local Search

Local search for **special cases** of MIP have been proposed

- Pseudo-Boolean optimization (0-1 programming)
- Pure integer programming
- MIP without the objective function

[Beresnev et al., 2012; Chu et al., 2023] [Prestwich et al., 2008; Lin et al., 2023] [Luteberget et al., 2023]

Main challenges to developing an efficient local search solver for MIP

- Enhancing adaptability
 - Solve general formulation rather than specific forms
- Balance the optimization and the satisfaction
 - These two factors are sometimes conflicting

Main techniques in our solver Local-MIP

Breakthrough move: operator for optimization

Mixed tight move: operator for satisfaction

Weighting scheme: balance the priority of search

Two-level scoring function structure

First level: progress scoreSecond level: bonus score

Improve the objective function aiming to break through the best-found solution

Given a variable x_i that appears in the objective function (i.e., $c_i \neq 0$), and a solution s that $obj(s) \geq obj(s^*)$, the breakthrough move operator, $bm(x_i, s)$, assigns a variable x_i to the threshold value making the objective value better than $obj(s^*)$ as possible and keeping x_i 's bounds satisfied.

9

Satisfy a constraint as tight as possible

Given a variable x_j , a constraint con_i containing x_j (i.e., $A_{ij} \neq 0$), and a solution s, the mixed tight move operator, $mtm(x_j, con_i, s)$, assigns x_j to the threshold value making the constraint con_i satisfied and tight as possible while keeping x_j 's bounds satisfied.

Integer variable x_1 with $1 \le x_1 \le 5$; a real variable x_2 with $1 \le x_2 \le 3$; $s^{cur} = \{s_1 = 4, s_2 = 1, 5\}$;

Given $con_1 : x_1 + x_2 \le 4.5$

 $mtm(x_1, con_1, s^{cur})$: assign x_1 to 3

 $mtm(x_2, con_1, s^{cur})$: assign x_2 to 1

satisfy con_1 and have the least impact on other constraints

Given $con_2 : -x_1 + x_2 \le -1$

 $mtm(x_1, con_2, s^{cur})$: assign x_1 to 3

 $mtm(x_2, con_2, s^{cur})$: assign x_2 to 3

takes the maximal change of variable and remains con₂ satisfied

Weighting schemes : adjust the priority of constraints by diversified weights in search process

Dynamically balance the weights of the objective function and each constraint

When the search process is trapped in a local optimum

The current weights are unable to effectively guide the search

-w(obj) = w(obj) + 1, if the current solution is feasible

 $w(con_i) = w(con_i) + 1$ for each violated constraint con_i , otherwise

12

Local-MIP

Local-MIP

First Level: Progress Score

Progress Score for the Objective Function

Progress Score for Each Constraint

Overall Progress Score

▶ **Definition 4.** Given an operation op, and the current solution s^{cur} . Let s^{op} be the new candidate solution generated by performing op on s^{cur} . The progress score of op for improving the quality of the objective value, denoted as $score_{progress}^{obj}(op)$,

$$score_{progress}^{obj}(op) = \begin{cases} w(obj), & if \ obj(s^{op}) < obj(s^{cur}), \\ -w(obj), & if \ obj(s^{op}) > obj(s^{cur}), \\ 0, & else. \end{cases}$$
(6)

▶ Definition 5. Given an operation op, a constraint con_i , and the current solution s^{cur} . Let s^{op} be the new candidate solution generated by performing op on s^{cur} . The progress score of op for improving the satisfaction of the constraint con_i , denoted as $score_{progress}^{con_i}(op)$,

$$score_{progress}^{con_{i}}(op) = \begin{cases} w(con_{i}), & \text{if } \mathbf{A}_{i} \cdot \mathbf{s}^{op} \leq b_{i} < \mathbf{A}_{i} \cdot \mathbf{s}^{cur}, \\ -w(con_{i}), & \text{if } \mathbf{A}_{i} \cdot \mathbf{s}^{cur} \leq b_{i} < \mathbf{A}_{i} \cdot \mathbf{s}^{op}, \\ w(con_{i})/2, & \text{if } b_{i} < \mathbf{A}_{i} \cdot \mathbf{s}^{op} < \mathbf{A}_{i} \cdot \mathbf{s}^{cur}, \\ -w(con_{i})/2, & \text{if } b_{i} < \mathbf{A}_{i} \cdot \mathbf{s}^{cur} < \mathbf{A}_{i} \cdot \mathbf{s}^{op}, \\ 0, & else. \end{cases}$$

$$(7)$$

Definition 6. Given an operation op, the progress score of op, denoted as $score_{progress}(op)$,

$$score_{progress}(op) = score_{progress}^{obj}(op) + \sum_{i=1}^{m} score_{progress}^{con_i}(op)$$
(8)

15 P. Lin, M. <u>Zou, and S. Cai</u>

An Efficient Local Search Solver for Mixed Integer Programming

Second Level: Bonus Score

Breakthrough Bonus for the Objective Function

Robustness Bonus for Each Constraint

Overall Bonus Score

▶ Definition 7. Given an operation op, and the best-found solution s^* . Let s^{op} be the new candidate solution generated by performing op on the current solution. The breakthrough bonus of op for breaking through the objective value of s^* , denoted as bonus_{break}(op),

$$bonus_{break}(op) = \begin{cases} w(obj), & if \ obj(s^{op}) < obj(s^*), \\ 0, & otherwise. \end{cases}$$
(9)

▶ **Definition 8.** Given an operation op, a constraint con_i . Let s^{op} be the new candidate solution generated by performing op on the current solution. The robustness bonus of op of the constraint con_i , denoted as $bonus_{robust}^{con_i}(op)$,

$$bonus_{robust}^{con_i}(op) = \begin{cases} w(con_i), & if \ \mathbf{A}_i \cdot s^{op} < b_i, \\ 0, & otherwise. \end{cases}$$
(10)

▶ Definition 9. Given an operation op, the bonus score of op, denoted as $score_{bonus}(op)$,

$$score_{bonus}(op) = bonus_{break}(op) + \sum_{i=1}^{m} bonus_{robust}^{con_i}(op)$$
(11)

16

An Efficient Local Search Solver for Mixed Integer Programming

Algorithm 1 The Local-MIP Algorithm

Input: MIP instance Q, time limit cutoff **Output:** Best-found solution s^* of Q and its objective value $obj(s^*)$ 1 $s^{cur} \leftarrow$ all variables are set to the value closest to 0 within their global bounds; 2 $s^* \leftarrow \emptyset; obj(s^*) \leftarrow +\infty;$ **3 while** running time < cutoff do if s^{cur} is feasible then Breakthrough Move Improve the objective value while maintaining feasibility by lift move process; Mixed Tight Move if $obj(s^{cur}) < obj(s^*)$ then 6 7 $candOP \leftarrow Get_Candidate_Operations(Q, s^{cur}); \circ$ 8 $candOP^+ \leftarrow operation(s)$ with the greatest progress score in candOP; 9 $op \leftarrow an operation with the greatest bonus score in <math>candOP^+$; o 10**Two-level Scoring** \bigcirc $s^{cur} \leftarrow$ a new solution generated by performing op to modify s^{cur} ; 11 **Function Structure** 12 return s^* and $obj(s^*)$;

Experiment Preliminary

A HÌGHS
SCIP
Solving Constraint Integer Programs

CPLEX

Feasibility Jump

Competitors

Benchmark	#Inst
MIPLIB-BP	66
MIPLIB-IP	32
MIPLIB-MBP	195
MIPLIB-MIP	62
BBP	60
JSP	80
OSP	60
Total	555

Benchmark

Time Limits

10s

60s

300s

An Efficient Local Search Solver for Mixed Integer Programming

P. Lin, M. Zou, and S. Cai

Comparison with SOTA Solvers

Comparison in terms of #Feas and #Win

- Outperforms CPLEX , HiGHS, SCIP and Feasibility Jump
- Competitive with the most powerful commercial solver Gurobi

Panahmark	- In at	HiG	GHS	SC	'IP	CPI	LEX	Guroł	$\mathrm{pi}_{\mathrm{comp}}$	Guro	bi _{heur}	F	J	Local	-MIP
Benchmark	<i>#Inst</i>	#Feas	#Win	#Feas	#Win	#Feas	#Win	#Feas	#Win	#Feas	#Win	#Feas	#Win	#Feas	#Win
time limit 10 seconds															
MIPLIB-BP	66	6	0	29	2	42	11	44	9	44	7	42	4	44	31
MIPLIB-IP	32	7	0	11	2	17	4	17	8	17	8	11	1	17	7
MIPLIB-MBP	195	57	1	80	7	116	31	117	43	119	51	56	10	103	35
MIPLIB-MIP	62	9	2	21	0	32	10	37	11	37	13	18	4	35	15
BPP	60	9	0	0	0	60	0	60	0	60	0	60	0	60	60
JSP	80	22	0	70	25	31	0	10	1	12	8	0	0	45	36
OSP	60	48	22	60	20	28	$\overline{7}$	47	27	42	25	1	0	60	45
Total	555	158	25	271	56	326	63	332	99	331	112	188	19	364	229
					1	time lin	nit 60 s	econds							
MIPLIB-BP	66	14	0	35	2	43	8	46	10	47	15	49	2	48	28
MIPLIB-IP	32	12	1	14	1	20	6	20	7	20	9	12	1	21	6
MIPLIB-MBP	195	96	6	109	2	129	32	137	49	134	65	62	9	119	23
MIPLIB-MIP	62	15	3	28	1	36	7	41	8	41	18	20	3	43	17
BPP	60	40	0	20	0	60	11	60	13	60	15	60	0	60	33
JSP	80	41	0	70	15	52	1	23	3	26	13	1	0	54	38
OSP	60	58	27	60	20	30	10	53	37	51	31	9	0	60	42
Total	555	276	37	336	41	370	75	380	127	379	166	213	15	405	187
					t	ime lim	nit 300 s	seconds							
MIPLIB-BP	66	22	1	42	4	43	6	47	10	48	23	49	0	49	17
MIPLIB-IP	32	14	2	17	2	21	5	21	10	22	14	12	1	22	4
MIPLIB-MBP	195	115	7	122	7	137	22	150	59	152	69	67	11	123	14
MIPLIB-MIP	62	24	1	34	1	38	7	44	10	43	23	21	3	45	16
BPP	60	47	0	40	0	60	31	60	30	60	13	60	0	60	3
JSP	80	49	0	70	0	68	1	36	10	34	20	1	0	70	41
OSP	60	60	38	60	24	33	13	55	40	60	43	19	0	60	44
Total	555	331	49	385	38	400	85	413	169	419	205	229	15	429	139

19

Comparison with SOTA Solvers

Run time comparison on each instance for finding the first feasible solution

There are obviously more instances above the red line, which confirms the powerful solving ability of Local-MIP.

09/04, 2024

Instance name	#var	# cons	constraint types	Previous best	Local-MIP
genus-sym-g31-8	3484	32073	knapsack, precedence, etc.	-21	-23
genus-sym-g62-2	12912	78472	set partitioning, set covering, etc.	-34	-38
genus-g61-25	14380	94735	cardinality, general linear, etc.	-34	-40
neos-4232544-orira	87060	180600	aggregations, variable bound, etc.	17540506.0	15108527.512195
				1	·

Each of these 4 instances contains multiple different constraint types, simultaneously indicating the powerful solving ability and its extensive applicability.

- <u>https://miplib.zib.de/instance_details_genus-sym-g31-8.html</u>
- https://miplib.zib.de/instance_details_genus-sym-g62-2.html
- <u>https://miplib.zib.de/instance_details_genus-g61-25.html</u>
- <u>https://miplib.zib.de/instance_details_neos-4232544-orira.html</u>

Analysis of Local-MIP

Breakthrough Move Operator	 <i>V_{no-bm}</i> removing all the breakthrough move operations

V _{no-weight}
• removing the activation of the weighting scheme

Bonus Score

09/04, 2024

Weighting

Scheme

V_{random} and V_{age}

• utilizing the random selection and the age strategy instead of bonus score to break ties

Bonchmark	#Inet	$10 \mathrm{se}$	conds	60 se	conds	300 se	conds	10 se	conds	$60 \mathrm{sec}$	conds	300 s	econds
Dentimark	#11151	<i>#better</i>	#worse	# better	#worse	<i>#better</i>	#worse	# better	#worse	# better	#worse	# better	#worse
			Con	parison	with V_{na}	b-bm			Comp	arison w	ith V_{no-}	-weight	
MIPLIB-BP	66	28	7	23	17	24	18	33	4	34	7	34	8
MIPLIB-IP	32	10	2	11	5	12	4	15	0	19	0	20	0
MIPLIB-MBP	195	61	20	68	26	63	35	95	5	112	5	116	5
MIPLIB-MIP	62	22	7	27	8	27	8	35	0	40	1	41	0
BPP	60	59	0	59	0	58	0	35	10	56	0	60	0
JSP	80	32	13	45	8	60	10	45	0	54	0	70	0
OSP	60	48	5	49	1	46	3	60	0	60	0	60	0
Total	555	260	54	282	65	290	78	318	19	375	13	401	13
			Com	parison	with V_{ra}	ndom			Со	mparisor	1 with V	age	
MIPLIB-BP	66	26	10	27	15	26	15	27	10	23	16	26	13
MIPLIB-IP	32	10	4	13	3	15	4	11	3	15	1	15	1
MIPLIB-MBP	195	69	27	80	30	71	43	66	28	68	42	71	41
MIPLIB-MIP	62	22	12	19	18	18	17	23	10	23	13	22	15
BPP	60	28	15	11	27	11	34	34	11	16	29	13	25
JSP	80	29	16	31	23	39	31	30	15	31	23	42	26
OSP	60	25	20	27	15	21	12	29	18	31	13	22	13
Total	555	209	104	208	131	201	156	220	95	207	137	211	134

An Efficient Local Search Solver for Mixed Integer Programming

P. Lin, M. Zou, and S. Cai

Conclusion and Future Work

Deep cooperation of local search and branch-and-bound

More sophisticated operators and scoring functions to improve Local-MIP

Local-MIP: an efficient local search solver for mixed integer programming Our code: <u>https://github.com/shaowei-cai-group/Local-MIP</u>

Thank You! Q&A

P. Lin, M. Zou, and S. Cai