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• Success often depends on experts designing domain-specific heuristics for neighbourhood 
selection

• Heuristics are often not easily transferable between domains.

While systematic search offers strong generic heuristics (e.g., weighted degree, 
impact-based, activity-based) for plug-and-play without domain-specific
knowledge.

The goal of our work was to develop a generic neighbourhood selection 
operator that performs well across multiple problem types
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First let’s flip this question and consider 
what is a bad neighbourhood:

• No Search Space:
• Domains of relaxed variables are reduced

to their solution values after propagation.

• Limited scope for improvement.

• Too Much Search Space:
• No propagation effects from assignments. 

• Search space is vast and disconnected.

• Leads to brute-force search over every 
domain value, inefficacious and time-
consuming.

What we want in a neighbourhood:

• Scope for Improvement:
• Uses variables sharing constraints to 

create connected neighbourhood that 
supports effective propagation.

• Enables efficient exploration without 
excessive domain reduction.

• Focuses on variables likely to improve the 
objective value.

• Strong Diversification:
• Avoids repetitive selections to prevent 

stagnation.
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three neighbourhood heuristics to work best:
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iteratively freezes variables until neighbourhood 
size

• Reverse PG-LNS: Start with all variables fixed, and 
progressively relaxes variables until neighbourhood 
size

• Pure random

Cost Impact Guided

• Proposed by Lombardi and Schaus in 
2014

• Selects variables for relaxation based 
on their impact on the cost

• The cost impact is determined by the 
variations in the lower bound that 
occur when each variable is assigned a 
value

• The variations are captured through 
the dives of the current solution in a 
rearranged order
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Improved Variable-Relationship 
Guided LNS

• Exploits the structural relationship between 
variables to guide the search process 
towards connected neighbourhoods

• Combines it with dynamic information that 
describes the variables states along search

• Uses Tournament selection to boost 
diversification and reduces computational 
effort by focusing on finding the best 
candidates from a subset, rather than from 
the entire set of variables.

Structural 
Relationship

Tournament 
Selection

Search State 
Information 

(SSI)
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Steel Mill Slab Problem (SMSP)

• Involves to assign steel orders to slabs 
while minimising slab wastage

• Each slab has a maximum weight capacity

• Orders have specific weight and colour

• This problem was used in the original Cost 
Impact Guided paper
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• Allocates a set of cars on a production line of
options’ installation over a fixed number of 
timeslots

• Each option installation bay has its own 
capacity

• Minimise the number of options not placed on 
the production line

• This problem was used in the original 
Propagation Guided paper

Car Sequencing Problem(CSP)

Model A Model CModel B Model D

Options

Cruise Control

Smart phone 
integration

Air Conditioning

Automatic 
transmission

Panoramic Roof

Number of cars 
required:

30 30 20 40

Model A Model CModel B

CB DAB A

Work area for Panoramic Roof

Capacity Constraint: 2/4

Work area for Cruise 
Control

Capacity Constraint: 2/3

D



Machine Reassignment Problem (MRP)

• Proposed by Google in 2012

• Given a current assignment of processes to 
machines in a data centre

• The goal is to reassign some of those processes in 
order to:
o Improve the machines usage
o Minimise the overload risks
o Minimise the number of changes
o Minimise the complexity of changes

• Subject to a set of constraint:
• Capacity
• Conflict
• Spread
• Dependency
• Transient Usage



Structural Relationship

Steel Mill Slab 

Problem
Car Sequencing 
Problem

Machine Reassignment 
Problem



Content

Introduction

Related Work

Improved Variable-Relationship Guided

Problems

• Steel Mill Slab Problem
• Car Sequencing Problem
• Machine Reassignment Problem

Result



• Slabs size 2

• Domain/Variables: 111

• Slabs size 3

• Domain/Variables: 111

• Slabs size 4

• Domain/Variables: 111

• Slabs size 5

• Domain/Variables: 111

80 SMSP

• 200 Cars:

• Domain/Variables: 200

• 300 cars:

• Domain/Variables: 300

• 400 cars:

• Domain/Variables: 400

30 CSP

• Set A:

• Domain: Up to 100

• Variables: Up to 1000

• Set B:

• Variables: Up to 50,000

• Domain: Up to 5,000

• Set X:

• Variables: Up to 50,000

• Domain: Up to 5,000

30 MRP

Datasets

140 Instances



• Slabs size 2

• Domain/Variables: 111

• Slabs size 3

• Domain/Variables: 111

• Slabs size 4

• Domain/Variables: 111

• Slabs size 5

• Domain/Variables: 111

80 SMSP

• 200 Cars:

• Domain/Variables: 200

• 300 cars:

• Domain/Variables: 300

• 400 cars:

• Domain/Variables: 400

30 CSP

• Set A:

• Domain: Up to 100

• Variables: Up to 1000

• Set B:

• Variables: Up to 50,000

• Domain: Up to 5,000

• Set X:

• Variables: Up to 50,000

• Domain: Up to 5,000

30 MRP

Datasets

140 Instances



• Slabs size 2

• Domain/Variables: 111

• Slabs size 3

• Domain/Variables: 111

• Slabs size 4

• Domain/Variables: 111

• Slabs size 5

• Domain/Variables: 111

80 SMSP

• 200 Cars:

• Domain/Variables: 200

• 300 cars:

• Domain/Variables: 300

• 400 cars:

• Domain/Variables: 400

30 CSP

• Set A:

• Domain: Up to 100

• Variables: Up to 1000

• Set B:

• Variables: Up to 50,000

• Domain: Up to 5,000

• Set X:

• Variables: Up to 50,000

• Domain: Up to 5,000

30 MRP

Datasets

140 Instances



• Slabs size 2

• Domain/Variables: 111

• Slabs size 3

• Domain/Variables: 111

• Slabs size 4

• Domain/Variables: 111

• Slabs size 5

• Domain/Variables: 111

80 SMSP

• 200 Cars:

• Domain/Variables: 200

• 300 cars:

• Domain/Variables: 300

• 400 cars:

• Domain/Variables: 400

30 CSP

• Set A:

• Domain: Up to 100

• Variables: Up to 1000

• Set B:

• Variables: Up to 50,000

• Domain: Up to 5,000

• Set X:

• Variables: Up to 50,000

• Domain: Up to 5,000

30 MRP

Datasets

140 Instances



Metrics

Score

• The same metric used in the ROADEF 
EURO Challenge 2012

• Measures the distance the solution 
found is from the BK

• Considers how much improvement 
was made from the initial solution



Metrics

Score

• The same metric used in the ROADEF 
EURO Challenge 2012

• Measures the distance the solution 
found is from the BK

• Considers how much improvement 
was made from the initial solution

Similarity

• The average percentage of 
intersection observed across the first 
1,000 iterations of the LNS



Experiments

• Comparison of generic heuristics:
• Rand - Pure random neighbourhood selection

• PG - Interleaved PG-LNS, Reverse PG-LNS, Rand

• CIG - Cost-Impact Guided

• iVRG - Improved Variable Relationship Guided
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Experiments

• Comparison of generic heuristics:
• Rand - Pure random neighbourhood selection

• PG - Interleaved PG-LNS, Reverse PG-LNS, Rand

• CIG - Cost-Impact Guided

• iVRG - Improved Variable Relationship Guided

• Comparison of iVRG components:
• NonT – iVRG without tournament selection (so chooses amongst all variables)

• NonS – iVRG without using search state information (so chooses randomly amongst 
tournament of variables related to previous selected)

• NonR – iVRG without variable relationship (so each tournament is just consisting of 
randomly selected variables, one with best SSI chosen)
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Conclusion
• Good neighbourhoods can be identified through combining 

information regarding the problem structure with information 
collected during search

• The empirical evaluation demonstrated the generalisability of iVRG

• The structural Relationship was the most important aspect, followed 
closely by tournament selection.
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