P\ inctigene B UCLouvain
Anytime Weighted Model

Counting with Approximation

Guarantees For Probabilistic

Inference

Alexandre Dubray, Pierre Schaus, Siegfried Nijssen



’ intelligence & B UCLouvadin

Algorithms

Model
Counting Approximation
Guarantees Probabilistic

Inference

Alexandre Dubray, Pierre Schaus, Siegfried Nijssen



Probabilistic Inference: Bayesian Networks
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Probabilistic Inference: Query on Bayesian Networks
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Probabilistic Inference: Query on Bayesian Networks
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Probabilistic Inference: A Counting Problem
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Chavira, Mark, and Adnan Darwiche. "On probabilistic inference by weighted model counting." Artificial Intelligence 172.6-7 (2008): 772-799.
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Probabilistic Inference: A Counting Problem
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Probabilistic Inference: A Counting Problem
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Why Model Counting?
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Why Model Cou nting? “One solver to solve them all”
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Probabilistic Inference for Large targuage Models

| L/ Computing exact probabilities
| “That’s a no-no” - Donald Trump

Computing approximate probabilities
“Yes we can” - Barack Obama
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Approximate Inference: Bounding the Error

=

Roth, Dan. "On the hardness of approximate reasoning." Artificial Intelligence 82.1-2 (1996): 273-302.
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Approximate Inference: Bounding the Error

c Approximated probability

Roth, Dan. "On the hardness of approximate reasoning." Artificial Intelligence 82.1-2 (1996): 273-302.
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Approximate Inference: Bounding the Error
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Approximate Inference: Bounding the Error

True probability

Roth, Dan. "On the hardness of approximate reasoning." Artificial Intelligence 82.1-2 (1996): 273-302.
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Approximate Inference: Bounding the Error

*

p

14¢
Upper bound on the true

p* <P(1+¢€)  probability !

<p

Roth, Dan. "On the hardness of approximate reasoning." Artificial Intelligence 82.1-2 (1996): 273-302.
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Approximate Inference: Bounding the Error

Epsilon guarantee bounds the true
probability with relative error

< p <(1+¢)p”

Roth, Dan. "On the hardness of approximate reasoning." Artificial Intelligence 82.1-2 (1996): 273-302.
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Approximate Inference: Bounding the Error

p _ \
< <(1l1+¢
T~ P=U+ep
p|_P <p<(l+ep|>1-90
1+e 1= =

Epsilon-delta guarantee bounds the
true count probabilistically

Roth, Dan. "On the hardness of approximate reasoning." Artificial Intelligence 82.1-2 (1996): 273-302.
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Count

Anytime Algorithms: Expectations

Classical DFS Algorithm
A

Time
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Fifty shades of Approximate Inference

Anytime Guarantees Lower bound Upper bound

d4/gpmc/ Exact on
exactMC/... completion

Lagniez, Jean-Marie, and Pierre Marquis. "A recursive algorithm for projected model counting." Proceedings of the AAAI Conference on Artificial

Intelligence. Vol. 33. No. 01. 2019.
Lagniez, Jean-Marie, and Pierre Marquis. "An Improved Decision-DNNF Compiler." IJCAI. Vol. 17. 2017.
Ryosuke Suzuki, Kenji Hashimoto, and Masahiko Sakai. Improvement of projected model counting solver with component decomposition using

SAT solving in components.
Yong Lai, Kuldeep S. Meel, and Roland HC Yap. The power of literal equivalence in model counting. In Proceedings of the AAAI Conference on

Artificial Intelligence, volume 35, 2021.
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Fifty shades of Approximate Inference

Anytime Guarantees Lower bound Upper bound
d4/gpmc/ Exact on
exactMC/... completion
ApproxMC/ 6 5
WeightMC °

Supratik Chakraborty, Kuldeep S. Meel, and Moshe Y. Vardi. Algorithmic improvements in approximate counting for probabilistic inference: From
linear to logarithmic SAT calls. In [JCAI, 2016.

Mate Soos, Stephan Gocht, and Kuldeep S. Meel. Tinted, Detached, and Lazy CNF-XOR solving and its Applications to Counting and Sampling.
In CCAV, 2020.

Mate Soos and Kuldeep S. Meel. BIRD: Engineering an efficient CNF-XOR SAT solver and its applications to approximate model counting. In
Proceedings of the AAAI Conference on Artificial Intelligence

Supratik Chakraborty, Daniel Fremont, Kuldeep Meel, Sanijit Seshia, and Moshe Vardi. Distribution-aware sampling and weighted model counting

for SAT. In AAAI, 2014. 29



Fifty shades of Approximate Inference

d4/gpmc/
exactMC/...

ApproxMC/
WeightMC

PartialKC /
SampleSAT

Yong Lai, Kuldeep S. Meel, and Roland HC Yap. Fast Converging Anytime Model Counting. In Proceedings of the AAAI Conference on Atrtificial

Intelligence, volume 37, 2023.
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X
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Fifty shades of Approximate Inference

Anytime Guarantees Lower bound Upper bound
d4/gpmc/ Exact on
exactMC/... completion
ApproxMC/ 6 5
WeightMC 9
PartialKC / Probability on
SampleSAT the LB
Toulbar J J
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Fifty shades of Approximate Inference

Our contribution

ALY

(€, 0)

Anytime Guarantees Lower bound Upper bound
d4/gpmc/ Exact on
exactMC/... completion
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PartialKC / Probability on
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Toulbar

"
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Fifty shades of Approximate Inference

Anytime Guarantees Lower bound Upper bound
d4/gpmc/ Exact on
exactMC/... completion
ApproxMC/ 8 5
WeightMC 9
PartialKC / Probability on
SampleSAT the LB
Toulbar J
Schlandals J

(€,0)

"
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DFS with Bounds Upper bound on the

00,1 (f/ (sub-)problem

Lower bound on the /

(sub-)problem
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DFS with Bounds

D3 = {'d%a dg’ dg’dg}

D3 # dj
P(D3 =d3) = 0.2
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DFS with Bounds

P(D3 = d3) = 0.2

36



DFS with Bounds
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DFS with Bounds
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DFS with Bounds

39



DFS with Bounds
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DFS with Bounds

[0.42, 0.42]
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Fifty shades of Approximate Inference

Anytime Guarantees Lower bound Upper bound
d4/gpmc/ Exact on
exactMC/... completion
ApproxMC/ 8 5
WeightMC 9
PartialKC / Probability on
SampleSAT the LB
Toulbar J J
Schlandals O
d ‘ (8 ) ) V d

42



From bounds to epsilon-guarantees

<p<(1 *
T =sp=(+ep
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From bounds to epsilon-guarantees
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From bounds to epsilon-guarantees
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From bounds to epsilon-guarantees

p* "
1+¢

?
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From bounds to epsilon-guarantees

p* .
1+¢
1+€ el

?

p*

f(Ib, ub) ub < Ib(1 +¢)* = <

+ £

Proof in the paper !

<Vibxub < (1+¢)p*
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From bounds to epsilon-guarantees

p* .
1+¢

?

F(1b, ub) ub < (1 +¢)* = o— < Vb x ub < (1 + e)p’

Lower- and upper-bounds
ub induced a minimal approximation
Shaub = A\ 7 T factor !
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Fifty shades of Approximate Inference

Anytime Guarantees Lower bound Upper bound
d4/gpmc/ Exact on
exactMC/... completion
ApproxMC/ 8 5
WeightMC 9
PartialKC / Probability on
SampleSAT the LB
Toulbar J J
Schlandals O
«/ (€,0) «/ J
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Ordering Matters (as usual)

wy, = 0.0035
wr, = 0.06
| wr, = 0.15
wy, = 0.2
wy, = 0.07
wr, = 0.1165
wr, = 0.4

P(query)

0.0035

P(query) = 1 — P(—query)

1.0
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Ordering Matters (as usual)

wr, = 0.06

| wr, = 0.15

wy, = 0.2

wy, = 0.07
wr, = 0.1165

Wi — 04

P(query)

0.0635

P(query) = 1 — P(—query)

1.0
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Ordering Matters (as usual)

| wr, = 0.15
wy, = 0.2
wy, = 0.07

wr, = 0.1165
wr, = 0.4

P(query)

0.0635

P(query) = 1 — P(—query)

1—-0.15=0.85
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Ordering Matters (as usual)

wy, = 0.2
wy, = 0.07
wr, = 0.1165
wr, = 0.4

P(query)

0.2635

P(query) = 1 — P(—query)

1—-0.15=0.85

53



Ordering Matters (as usual)

P(query) | P(query) = 1 — P(~query)

0.2635 1—0.7365 = 0.2635
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Ordering Matters (as usual)

wy, = 0.0035
| wr, = 0.06
| wr, = 0.15
wy, = 0.2
wy, = 0.07
wr, = 0.1165
wr, = 0.4

P(query)

0.0035

P(query) = 1 — P(—query)

1.0

wr, = 0.4
wr, = 0.2
wr, = 0.15
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wr, = 0.06
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P(query)
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P(query) = 1 — P(—query)

0.6
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Ordering Matters (as usual)

wr, = 0.06

| wr, = 0.15

wy, = 0.2
wy, = 0.07
wr, = 0.1165

wr, = 0.4
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0.0635
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Ordering Matters (as usual)

| wr, = 0.15
wy, = 0.2
wr, = 0.07

wy, = 0.1165
wr, = 0.4

P(query)

0.0635

P(query) = 1 — P(—query)

1—-0.15=0.85

wi, = 0.15

wy, = 0.1165

wyr, = 0.07

wr, = 0.06

wy, = 0.0035

P(query)

0.2
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0.45
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Ordering Matters (as usual)

wy, = 0.2
wy, = 0.07
wr, = 0.1165
wr, = 0.4

P(query)

0.2635

P(query) = 1 — P(—query)

1—-0.15=0.85

P(query)

Wiy, = 0.15

wy, = 0.1165 02

Wy, = 0.07
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wr, = 0.0035

P(query) = 1 — P(—query)

0.3335
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Ordering Matters (as usual)

P(query)

0.2635

P(query) = 1 — P(—query)

1—-0.7365 = 0.2635

P(query)

0.2635

P(query) = 1 — P(—query)

0.2635
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Finding Most Likely Interpretations First

Smoking € {yes, sometimes, no}
P(Smoking = yes) = 0.1
P(Smoking = sometimes) = 0.3

Which value to choose first ?
Yes, no, or Sometimes ? P(Smoking = no) = 0.6
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Finding Most Likely Interpretations First

Smoking € {yes, sometimes, no}
P(Smoking = yes) = 0.1

Which value to choose first ?
Yes, no, or Sometimes ?

P(Smoking = no) = 0.6
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Limited Discrepancy Search: Assumptions

Hypothesis 1: The value selection heuristic can be trusted (i.e., favours most likely
interpretation first)

wr, = 0.4
wr, = 0.2
wy, = 0.15
wr, = 0.1165
wr, = 0.07
wr, = 0.06

wy, = 0.0035
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Limited Discrepancy Search: Assumptions

Hypothesis 2: If the heuristics is wrong, it is only at a few nodes of the search tree
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Limited Discrepancy Search: assumptions

Hypothesis 2: If the heuristics is wrong, it is only at a few nodes of the search tree

How to quickly find 177?

wr, = 0.4
wy, = 0.2
wy, = 0.15
wr, = 0.1165
wr, = 0.07
wr, = 0.06

wy, = 0.0035
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Limited Discrepancy Search: incremental search
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Limited Discrepancy Search: incremental search
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Limited Discrepancy Search: incremental search
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Limited Discrepancy Search: incremental search
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Mix it all together

£ =00

0.0, 1.0]
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Mix it all together

e = 1.828
[0.1,0.8]
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Mix it all together

e = 0.632
[0.15,0.4]
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Mix it all together

e =0.183
[0.2,0.28]
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Mix it all together

If epsilon given by user
= 0.2, search can be
stopped here !

e =0.183
[0.2,0.28]
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Mix it all together

e = 0.0
10.2635,0.2635]
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Fifty shades of Approximate Inference

Schlandals-LDS

(€,0)

Anytime Guarantees Lower bound Upper bound
d4/gpmc/ Exact on
exactMC/... completion
ApproxMC/ 8 5
WeightMC 9
PartialKC / Probability on
SampleSAT the LB
Toulbar J J

v
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Experiments

Marginal Probability in Bayesian Networks, Reliability estimation in prob.
graphs

Small, large and medium networks

Timeout: 600s

Difficult query if solving time > 100s

Q1. Is Schlandals-LDS efficient ?
Q2. Better handling of difficult queries ?
Q3. Does LDS allows faster bound convergence ?
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Experiments: Cactus Plot

§ Schlandals, Schlandals-LDS(0.0)
| 75
£ 0.75;
g S e oo | d4, Toulbar
D 0.50- /
=
5 4
n
+ 0.251 ’,
8._ (1]
£ 0.00
(a1 - . : :
0 200 400 600

Runtime in seconds
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Experiments: Bounds Convergence

> Close (< 10% gap)
2 07 from the true
g 0.61 probability
S o0s
,é 0.4
Far aways from the 031
true probability -
(I) 160 2(I)O 3(I)O 460 5(I)0 6(I)O

Runtime (s)

—— DFS anytimelb  —=-=- DFS anytime ub
—— LDSIb -==- LDS ub
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Experiments: Bounds Convergence

o©

Bounds convergence
o

0 100 200 300 400 500 600
Runtime (s)

—— DFS anytimelb  —=-=- DFS anytime ub
—— LDS Ib -==- LDS ub
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Experiments: Bounds Convergence

o
(o]
1

Bounds convergence
©
u
1

0 100 200 300 400 500 600
Runtime (s)

—— DFS anytimelb  —=-=- DFS anytime ub
—— LDS Ib -==- LDS ub
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Conclusion & further work

- Deterministic upper- and lower- bounds on the weighted model count
- New Anytime (projected) weighted model counter
- LDS to fasten bounds convergence
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Conclusion & further work

- Deterministic upper- and lower- bounds on the weighted model count
- New Anytime (projected) weighted model counter
- LDS to fasten bounds convergence

- Change the discrepancy increment
- Use the bounds to guide the search
- Apply LDS to “classical” weighted model counter
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Experiments: Cactus Plot

-
0o

&
o

Prop. of solved instances

o
I

—e— Schlandals-DFS
—— e=0.01
—v— e=0.1
—s— e=0.5
0 200 400 600

Runtime in seconds
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Deterministic Bounds: Lower Bound

WMC(F) =", P(D; = d}) x WMC(F

D;=d’ )

LB=Y" P(D;=d)x WMC(F

p—at) (M’ <=m)

2



Deterministic Bounds: Upper Bound

Max. before propagation - Max. after propagation

H( > P(Dizd)>H< > P(Di:d)>

D;eF \dedom(D;) D;eF \dedom'(D;)
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Modelling Distributions in CNF

Trip to Asia

!

Tuberculosis

Smoking

Lung Cancer

v

7

breathing

\ 4
Either tub. or Bronchitis
cancer
Difficulty
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Modelling Distributions in CNF
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!

Tuberculosis

Smoking

Lung Cancer
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breathing

\ 4
Either tub. or Bronchitis
cancer
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Smoking € {yes, sometimes, no}
P(Smoking = yes) = 0.1
P(Smoking = sometimes) = 0.3
P(Smoking = no) = 0.6
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Modelling Distributions in CNF

Trip to Asia

!

Tuberculosis

Smoking

Lung Cancer

v

-

Y
Either tub. or Bronchitis
cancer
Difficulty
breathing

Smoking € {yes, sometimes, no}
P(Smoking = yes) = 0.1
P(Smoking = sometimes) = 0.3
P(Smoking = no) = 0.6

R/_/

Syesy Ssometimes) Sno € {Ta J-}

W(8yes) = 0.1, w(S sometimes) = 0.3, w(8po) = 0.6
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Modelling Distributions in CNF

Trip to Asia

!

Tuberculosis

Smoking

Lung Cancer

v

-

Y
Either tub. or Bronchitis
cancer
Difficulty
breathing

Smoking € {yes, sometimes, no}
P(Smoking = yes) = 0.1
P(Smoking = sometimes) = 0.3
P(Smoking = no) = 0.6

RV/_/

Syesy Ssometimes) Sno € {T, L1}
W(8yes) = 0.1, w(S sometimes) = 0.3, w(8n,) = 0.6
Syes V Ssometimes V Sno
T8yes V TS sometimes
TSyes V "8po

8 sometimes V TSno
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Modelling Distributions in CNF

Trip to Asia

Smoking

!

Tuberculosis Lung Cancer

v

-~

Y
Either tub. or Bronchitis
cancer
Difficulty
breathing

Smoking € {yes, sometimes, no}
P(Smoking = yes) = 0.1
P(Smoking = sometimes) = 0.3
P(Smoking = no) = 0.6

\f‘/

Syesy Ssometimes) Sno € {T, J-}

) = 0.3,w(8,,) = 0.6
At least one

W(8yes) = 0.1, w(8 sometinm

Syes V Ssometimes V Sno

T8yes V sometimes
TSyes V "8ne

8 sometimes V TSno
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Modelling Distributions in CNF

Trip to Asia

!

Tuberculosis

Smoking

Lung Cancer

v

-

Y
Either tub. or Bronchitis
cancer
Difficulty
breathing

Smoking € {yes, sometimes, no}
P(Smoking = yes) = 0.1
P(Smoking = sometimes) = 0.3
P(Smoking = no) = 0.6

\f‘/

Syesy Ssometimes) Sno € {T, J-}

W(8yes) = 0.1, w(S sometimes) = 0.3, w(8n,) = 0.6

At most one

8 sometimes V TSno
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Modelling Distributions in Schlandals

Trip to Asia

|

Tuberculosis

Smoking

Lung Cancer

v

|~

\ 4
Either tub. or Bronchitis
cancer
Difficulty
breathing

Smoking € {yes, sometimes, no}
P(Smoking = yes) = 0.1
P(Smoking = sometimes) = 0.3
P(Smoking = no) = 0.6

\v,_/

Syesy Ssometimes) Sno € {T, J—}

W(8yes) = 0.1, w(S sometimes) = 0.3, w(8n,) = 0.6

Syes V Ssometimes V Sno

8 sometimes V TSno

Distribution 1st-class citizens
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Branching: classical CNF v.s. Schlandals

e

T 1

%
T 1 Yyes mi—~To
Gem)

93



