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Probabilistic Inference: Query on Bayesian Networks

6
P(Difficulty breathing) = ?

In general, #P-hard problem 
(harder than NP)
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Probabilistic graphical models: 
principles and techniques. MIT 
press, 2009.
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Model counting is also 
#P-hard (counting a NP-hard 
problem)

Chavira, Mark, and Adnan Darwiche. "On probabilistic inference by weighted model counting." Artificial Intelligence 172.6-7 (2008): 772-799.
Valiant, Leslie G. "The complexity of enumeration and reliability problems." siam Journal on Computing 8.3 (1979): 410-421.
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Probabilistic Inference for Large language Models

Computing exact probabilities
“That’s a no-no” - Donald Trump

Computing approximate probabilities
“Yes we can” - Barack Obama
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Approximated probability
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True probability
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Upper bound on the true 
probability !

Roth, Dan. "On the hardness of approximate reasoning." Artificial Intelligence 82.1-2 (1996): 273-302.



Approximate Inference: Bounding the Error

22

Epsilon guarantee bounds the true 
probability with relative error

Roth, Dan. "On the hardness of approximate reasoning." Artificial Intelligence 82.1-2 (1996): 273-302.
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Epsilon-delta guarantee bounds the 
true count probabilistically

Roth, Dan. "On the hardness of approximate reasoning." Artificial Intelligence 82.1-2 (1996): 273-302.
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Fifty shades of Approximate Inference

Anytime Guarantees Lower bound Upper bound

d4/gpmc/
exactMC/…

Exact on 
completion
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DFS with Bounds

Lower bound on the 
(sub-)problem

Upper bound on the 
(sub-)problem
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? Proof in the paper ! 



From bounds to epsilon-guarantees
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?

Lower- and upper-bounds 
induced a minimal approximation 
factor !
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Finding Most Likely Interpretations First

Which value to choose first ?
Yes, no, or Sometimes ?
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Limited Discrepancy Search: Assumptions

Hypothesis 1: The value selection heuristic can be trusted (i.e., favours most likely 
interpretation first)
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Limited Discrepancy Search: Assumptions

Hypothesis 2: If the heuristics is wrong, it is only at a few nodes of the search tree
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Limited Discrepancy Search: assumptions

How to quickly find I7?

Hypothesis 2: If the heuristics is wrong, it is only at a few nodes of the search tree
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Mix it all together

73

If epsilon given by user 
= 0.2, search can be 
stopped here !



Mix it all together
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Fifty shades of Approximate Inference

Anytime Guarantees Lower bound Upper bound

d4/gpmc/
exactMC/…

Exact on 
completion

ApproxMC/
WeightMC

PartialKC / 
SampleSAT

Probability on 
the LB

Toulbar

Schlandals-LDS
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Experiments
- Marginal Probability in Bayesian Networks, Reliability estimation in prob. 

graphs
- Small, large and medium networks
- Timeout: 600s
- Difficult query if solving time > 100s

- Q1. Is Schlandals-LDS efficient ?
- Q2. Better handling of difficult queries ?
- Q3. Does LDS allows faster bound convergence ?
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Experiments: Cactus Plot

d4, Toulbar

ExactMC

Schlandals, Schlandals-LDS(0.0)
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Experiments: Bounds Convergence
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Far aways from the 
true probability

Close (< 10% gap) 
from the true 
probability
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Conclusion & further work
- Deterministic upper- and lower- bounds on the weighted model count
- New Anytime (projected) weighted model counter
- LDS to fasten bounds convergence
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Conclusion & further work
- Deterministic upper- and lower- bounds on the weighted model count
- New Anytime (projected) weighted model counter
- LDS to fasten bounds convergence

- Change the discrepancy increment
- Use the bounds to guide the search
- Apply LDS to “classical” weighted model counter
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Experiments: Cactus Plot
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Deterministic Bounds: Lower Bound
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Deterministic Bounds: Upper Bound
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Modelling Distributions in CNF

At least one
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Modelling Distributions in CNF
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Modelling Distributions in Schlandals

Distribution 1st-class citizens
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Branching: classical CNF v.s. Schlandals
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