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● Branching commonly decomposed in 2 steps

○ Select an unfixed variable x to branch on

○ Select a value v to assign to the branching variable x

● Extensive work dedicated to variable selection based on first-fail principle

○ Pick variable with smallest domain

○ Pick variable involved in many failures / recent conflicts

○ Combinaison of the two (e.g. DomWDeg + Last Conflict)

● Few work dedicated on value selection

○ Picking the minimum value of the domain (MinDom) remains the 
popular default choice
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CP = Model + Search



Problem with MinDom
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MinDom (black-box) compared to 
nearest neighbor (greedy white-box)
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● Instances from 
TSPLib

● Variable selection: 
DomWDeg + Last 
Conflict

● Average primal gap 
reported

● Value close to 100% : 
no solution

● Value close to 0% : 
best found solution

● The lower the better



How to mimic nearest neighbor selection
in a black-box fashion?
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Bound-Impact Value Selection (BIVS)
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● Look at every value v of 
the branching variable x

● What is the impact on the 
objective if x = v ?

● Return the value with the 
best impact on the 
objective

Fages, J. G., & Prud'Homme, C. (2017, November). Making the first solution good!. In 2017 IEEE 
29th International Conference on Tools with Artificial Intelligence (ICTAI) (pp. 1073-1077). IEEE.
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Bound-Impact Value Selection (BIVS)
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Bound-Impact Value Selection (BIVS)

17

0 3

12

12

Dom = {3}

20

16

12

16

Cost = {56 .. 72}

● Look at every value v of 
the branching variable x

● What is the impact on the 
objective if x = v ?

● Return the value with the 
best impact on the 
objective

● 1 🠊 LB = 60
● 2 🠊 LB = 52
● 3 🠊 LB = 56

20
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BIVS in practice
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Problem with BIVS: its cost

20

Size of domain Cost of Fixpoint 

● Time consuming

● Author’s advice: 

○ Use it for domain sizes <= 100

○ If domain size too large: consider only the bounds of the domain

● Not suited for full exhaustive search on large problems



Let’s try to reduce the cost (part 1)
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Size of domain Cost of Fixpoint 



Do we really need a 
fixpoint computation?
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Restricted Fixpoint (RF)
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Some considerations about Restricted Fixpoint (RF)

● Less informed than a regular fixpoint
○ BIVS with and without RF might not select the same value

● But much faster
○ On a TSP, only 2 constraints are considered, no matter the TSP size

● Can be implemented by deactivating temporarily constraints out of interest
● Cheap to compute: shortests paths are precomputed before the search
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Applying RF on BIVS
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Let’s try to reduce the cost (part 2)
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Size of domain Cost of Fixpoint 



Bound-Impact Value 
Selection (BIVS)
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● Look at every value v of the 
branching variable x

● What is the impact on the 
objective if x = v ?

● Return the value with the best 
impact on the objective

● Start from variable, 
look at objective



Bound-Impact Value 
Selection (BIVS)
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● Look at every value v of the 
branching variable x

● What is the impact on the 
objective if x = v ?

● Return the value with the best 
impact on the objective
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Reverse Look-Ahead

● Look at values v of the 
objective

● What is the impact on the 
branching variable if objective 
shrink to interval obj <= v ?

● Return value found when 
objective shrink to best interval

● Start from objective, look at 
variable
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Reverse Look-Ahead

● Look at values v of the 
objective

● What is the impact on the 
branching variable if objective 
shrink to interval obj <= v ?

● Return value found when 
objective shrink to best interval

● Start from objective, look at 
variable
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Some considerations about Reverse Look-Ahead (RLA)

● Different exploration than BIVS
○ BIVS with and without RLA might not select the same value

● Different from MinDom
○ Value is picked in reduced domain, not initial one

● May deduce bounds on objective at each selection 

● Cost not always smaller than BIVS
○                                                      compared to

● Similar to destructive lower bound in scheduling
○ But used as a value selector instead
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Are we there yet?
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Combining the two methods
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RLA + RF

● Faster than BIVS+RF and RLA

● Still slower than MinDom (obviously)
but more informed

● Deduces less bounds than RLA
○ Less iterations can be expected

○ Fixpoint not as strong

○ Example with TSP: no bounds deduced

● On the TSP: requires only 2 constraints propagation (cost:     )
○ 1 Sum and 1 Element, no matter the instance size

○ RLA+RF cost:

○ BIVS+RF cost: 62



Same performances as greedy!
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What about other problems?
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XCSP3

● Competition from 2023 considered

○ Instances too voluminous discarded

○ 18 problems, 232 instances

○ Various problems: scheduling, routing, assignments, …

● Black-Box optimization

● Variable Selection: DomWDeg + Last Conflict

● Timeout of 30 minutes
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Experiments on XCSP3
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Experiments on XCSP3
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68Gap (#instances with a feasible solution found)



Wrapping up the results

● RF adds value on both BIVS and RLA

● MinDom finds more feasible solutions 
○ Hypothesis: more nodes in the search tree are explored, giving variable selection 

more opportunity to learn

● RLA+RF gives the best gaps on average

● Best heuristic is problem-dependent
○ Result also observed on papers about variable selection heuristics
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Conclusion

● BIVS is an efficient but costly heuristic for selecting 
branching values

● We presented 2 methods to lower its cost
○ Restricted Fixpoint, considering a subset of constraints
○ Reverse Look-Ahead, shrinking the objective and 

observing the impact on branching variable
● Both methods are easy to implement
● They improved the performances (in both speed and 

objective values)
● Could become default value selection in CP solvers
● Algorithms, source code and more experiments 

available in the paper
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Experiments on XCSP3

72

● BIVS author’s advice: 
○ Use it for domain sizes <= 100
○ If domain size too large: consider only the 

bounds of the domain
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Runtime (s)

Primal gap



Differences with ranking values before the search

● Consider BinPacking problem
● Minimize maximum load
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Differences with ranking values before the search

● Consider BinPacking problem
● Minimize maximum load
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How to run a Restricted Fixpoint in a solver

● Example in Choco-Solver
● setPassive() method from propagator: deactivate its propagation

○ Temporary, deactivation removed upon backtrack
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How to run a Restricted Fixpoint in a solver

● Example in Choco-Solver
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How to run a Restricted Fixpoint in a solver
● This is but one way to implement it
● Others are possible 

○ For instance propagating “manually” the constraints (require to implement another 
fixpoint method, taking as input the constraints to consider)

● Advantage of this one: 
○ Can tell if shortest paths are still valid when parsing them
○ No need to implement a new fixpoint method, no weird hidden interactions with solver
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