
Black-Box Value Heuristics for
solving Optimization problems with

Constraint Programming
Augustin Delecluse, Pierre Schaus

● Branching commonly decomposed in 2 steps

○ Select an unfixed variable x to branch on

○ Select a value v to assign to the branching variable x

● Extensive work dedicated to variable selection based on first-fail principle

○ Pick variable with smallest domain

○ Pick variable involved in many failures / recent conflicts

○ Combinaison of the two (e.g. DomWDeg + Last Conflict)

● Few work dedicated on value selection

○ Picking the minimum value of the domain (MinDom) remains the
popular default choice

2

CP = Model + Search

Problem with MinDom

0 3

12

● Has no consideration for the
objective

● Can lead to bad first solution

○ Large search tree

○ Large runtime

● Example with TSP

12

3

20

16

12

16

20

Problem with MinDom

0 3

12

12

4

Dom = {1, 2, 3}

20

16

12

16

● Has no consideration for the
objective

● Can lead to bad first solution

○ Large search tree

○ Large runtime

● Example with TSP

20

Problem with MinDom

0 3

12

12

5

Dom = {1}

20

16

12

16

● Has no consideration for the
objective

● Can lead to bad first solution

○ Large search tree

○ Large runtime

● Example with TSP

20

Problem with MinDom

0 3

12

12

6

20

16

12

16

Dom = {2, 3}

● Has no consideration for the
objective

● Can lead to bad first solution

○ Large search tree

○ Large runtime

● Example with TSP

20

Problem with MinDom

0 3

12

12

7

20

16

16

Dom = {2}

● Has no consideration for the
objective

● Can lead to bad first solution

○ Large search tree

○ Large runtime

● Example with TSP

20

Problem with MinDom

0 3

12

8

20

16

16

● Has no consideration for the
objective

● Can lead to bad first solution

○ Large search tree

○ Large runtime

● Example with TSP

20

9

0 3

12

20

16

16

First solution cost with
MinDom: 72

20

10

0 3

12

12

16

16

0 3

12

20

16

16

12

First solution cost with
MinDom: 72

Best solution cost: 56

First solution found by
selecting nearest neighbor!

20

MinDom (black-box) compared to
nearest neighbor (greedy white-box)

11

● Instances from
TSPLib

● Variable selection:
DomWDeg + Last
Conflict

● Average primal gap
reported

● Value close to 100% :
no solution

● Value close to 0% :
best found solution

● The lower the better

How to mimic nearest neighbor selection
in a black-box fashion?

12

Bound-Impact Value Selection (BIVS)

13

● Look at every value v of
the branching variable x

● What is the impact on the
objective if x = v ?

● Return the value with the
best impact on the
objective

Fages, J. G., & Prud'Homme, C. (2017, November). Making the first solution good!. In 2017 IEEE
29th International Conference on Tools with Artificial Intelligence (ICTAI) (pp. 1073-1077). IEEE.

Bound-Impact Value Selection (BIVS)

14

0 3

12

12

Dom = {1, 2, 3}

20

16

12

16

Cost = {48 .. 80}

● Look at every value v of
the branching variable x

● What is the impact on the
objective if x = v ?

● Return the value with the
best impact on the
objective

Fages, J. G., & Prud'Homme, C. (2017, November). Making the first solution good!. In 2017 IEEE
29th International Conference on Tools with Artificial Intelligence (ICTAI) (pp. 1073-1077). IEEE.

20

Bound-Impact Value Selection (BIVS)

15

0 3

12

12

Dom = {1}

20

16

12

16

Cost = {60 .. 76}

● Look at every value v of
the branching variable x

● What is the impact on the
objective if x = v ?

● Return the value with the
best impact on the
objective

● 1 🠊 LB = 60

20

Bound-Impact Value Selection (BIVS)

16

0 3

12

12

Dom = {2}

20

16

12

16

Cost = {52 .. 68}

● Look at every value v of
the branching variable x

● What is the impact on the
objective if x = v ?

● Return the value with the
best impact on the
objective

● 1 🠊 LB = 60
● 2 🠊 LB = 52

20

Bound-Impact Value Selection (BIVS)

17

0 3

12

12

Dom = {3}

20

16

12

16

Cost = {56 .. 72}

● Look at every value v of
the branching variable x

● What is the impact on the
objective if x = v ?

● Return the value with the
best impact on the
objective

● 1 🠊 LB = 60
● 2 🠊 LB = 52
● 3 🠊 LB = 56

20

Bound-Impact Value Selection (BIVS)

18

● Look at every value v of
the branching variable x

● What is the impact on the
objective if x = v ?

● Return the value with the
best impact on the
objective

● 1 🠊 LB = 60
● 2 🠊 LB = 52 🠊 select value 2
● 3 🠊 LB = 56

0 3

12

12

Dom = {1, 2, 3}

20

16

12

16

Cost = {48 .. 80}

20

BIVS in practice

19

Problem with BIVS: its cost

20

Size of domain Cost of Fixpoint

● Time consuming

● Author’s advice:

○ Use it for domain sizes <= 100

○ If domain size too large: consider only the bounds of the domain

● Not suited for full exhaustive search on large problems

Let’s try to reduce the cost (part 1)

21

Size of domain Cost of Fixpoint

Do we really need a
fixpoint computation?

22

0 3

12

12

16

12

16

2020

Do we really need a
fixpoint computation?

23

distSucc0 distSucc1 distSucc2 distSucc3 sumDistsucc1 succ2 succ3succ0

Circuit Element0 Element1 Element3Element2 Sum Minimize

0 3

12

12

16

12

16

2020

Do we really need a
fixpoint computation?

24

distSucc0 distSucc1 distSucc2 distSucc3 sumDistsucc1 succ2 succ3succ0

Circuit Element0 Element1 Element3Element2 Sum Minimize

0 3

12

12

16

12

16

{1} {48 .. 80}{0, 2, 3} {0, 1, 3} {0, 1, 2} {12, 16, 20} {12, 16, 20} {12, 16, 20} {12, 16, 20}

2020

Do we really need a
fixpoint computation?

25

distSucc0 distSucc1 distSucc2 distSucc3 sumDistsucc1 succ2 succ3succ0

Circuit Element0 Element1 Element3Element2 Sum Minimize

0 3

12

12 20

16

12

16

{1} {48 .. 80}{2, 3} {0, 3} {0, 2} {12, 16, 20} {12, 16, 20} {12, 16, 20} {12, 16, 20}

20

Do we really need a
fixpoint computation?

26

distSucc0 distSucc1 distSucc2 distSucc3 sumDistsucc1 succ2 succ3succ0

Circuit Element0 Element1 Element3Element2 Sum Minimize

0 3

12

12 20

16

12

16

{1} {48 .. 80}{2, 3} {0, 3} {0, 2} {20} {12, 16, 20} {12, 16, 20} {12, 16, 20}

20

Do we really need a
fixpoint computation?

27

distSucc0 distSucc1 distSucc2 distSucc3 sumDistsucc1 succ2 succ3succ0

Circuit Element0 Element1 Element3Element2 Sum Minimize

0 3

12

12 20

16

12

16

{1} {48 .. 80}{2, 3} {0, 3} {0, 2} {20} {12, 16} {12, 16, 20} {12, 16, 20}

20

Do we really need a
fixpoint computation?

28

distSucc0 distSucc1 distSucc2 distSucc3 sumDistsucc1 succ2 succ3succ0

Circuit Element0 Element1 Element3Element2 Sum Minimize

0 3

12

12 20

16

12

16

{1} {48 .. 80}{2, 3} {0, 3} {0, 2} {20} {12, 16} {12, 20} {12, 16, 20}

20

Do we really need a
fixpoint computation?

29

distSucc0 distSucc1 distSucc2 distSucc3 sumDistsucc1 succ2 succ3succ0

Circuit Element0 Element1 Element3Element2 Sum Minimize

0 3

12

12 20

16

12

16

{1} {48 .. 80}{2, 3} {0, 3} {0, 2} {20} {12, 16} {12, 20} {16, 20}

20

Do we really need a
fixpoint computation?

30

distSucc0 distSucc1 distSucc2 distSucc3 sumDistsucc1 succ2 succ3succ0

Circuit Element0 Element1 Element3Element2 Sum Minimize

0 3

12

12 20

16

12

16

{1} {60 .. 76}{2, 3} {0, 3} {0, 2} {20} {12, 16} {12, 20} {16, 20}

20

Do we really need a
fixpoint computation?

31

distSucc0 distSucc1 distSucc2 distSucc3 sumDistsucc1 succ2 succ3succ0

Circuit Element0 Element1 Element3Element2 Sum Minimize

0 3

12

12

16

12

16

● Very little contributions from many
constraints

● Let’s skip some of them

{1} {60 .. 76}

2020

32

distSucc0 distSucc1 distSucc2 distSucc3 sumDistsucc1 succ2 succ3succ0

Circuit Element0 Element1 Element3Element2 Sum Minimize

0 3

12

12 20

16

12

16

● Consider only the constraints on the
shortest path of the constraint network

Restricted Fixpoint (RF)

20

33

distSucc0 distSucc1 distSucc2 distSucc3 sumDistsucc1 succ2 succ3succ0

Circuit Element0 Element1 Element3Element2 Sum Minimize

0 3

12

12 20

16

12

16

● Consider only the constraints on the
shortest path of the constraint network

{1} {48 .. 80}{0, 2, 3} {0, 1, 3} {0, 1, 2} {12, 16, 20} {12, 16, 20} {12, 16, 20} {12, 16, 20}

Restricted Fixpoint (RF)

20

34

distSucc0 distSucc1 distSucc2 distSucc3 sumDistsucc1 succ2 succ3succ0

Circuit Element0 Element1 Element3Element2 Sum Minimize

0 3

12

12

16

12

16

● Consider only the constraints on the
shortest path of the constraint network

20

{1} {48 .. 80}{0, 2, 3} {0, 1, 3} {0, 1, 2} {20} {12, 16, 20} {12, 16, 20} {12, 16, 20}

Restricted Fixpoint (RF)

20

Restricted Fixpoint (RF)

35

distSucc0 distSucc1 distSucc2 distSucc3 sumDistsucc1 succ2 succ3succ0

Circuit Element0 Element1 Element3Element2 Sum Minimize

0 3

12

12 20

16

12

16

● Consider only the constraints on the
shortest path of the constraint network

{1} {56 .. 80}{0, 2, 3} {0, 1, 3} {0, 1, 2} {20} {12, 16, 20} {12, 16, 20} {12, 16, 20}

20

Some considerations about Restricted Fixpoint (RF)

● Less informed than a regular fixpoint
○ BIVS with and without RF might not select the same value

● But much faster
○ On a TSP, only 2 constraints are considered, no matter the TSP size

● Can be implemented by deactivating temporarily constraints out of interest
● Cheap to compute: shortests paths are precomputed before the search

36

distSucc0 distSucc1 distSucc2 distSucc3 sumDistsucc1 succ2 succ3succ0

Circuit Element0 Element1 Element3Element2 Sum Minimize

Applying RF on BIVS

37

Let’s try to reduce the cost (part 2)

38

Size of domain Cost of Fixpoint

Bound-Impact Value
Selection (BIVS)

39

● Look at every value v of the
branching variable x

● What is the impact on the
objective if x = v ?

● Return the value with the best
impact on the objective

● Start from variable,
look at objective

Bound-Impact Value
Selection (BIVS)

40

● Look at every value v of the
branching variable x

● What is the impact on the
objective if x = v ?

● Return the value with the best
impact on the objective

● Start from variable,
look at objective

Reverse Look-Ahead

● Look at values v of the
objective

● What is the impact on the
branching variable if objective
shrink to interval obj <= v ?

● Return value found when
objective shrink to best interval

● Start from objective, look at
variable

41

Reverse Look-Ahead

● Look at values v of the
objective

● What is the impact on the
branching variable if objective
shrink to interval obj <= v ?

● Return value found when
objective shrink to best interval

● Start from objective, look at
variable

42

Reverse Look-Ahead

0 3

12

12 20

16

12

16

48 49 50 51 5352 54 55 56 57 58 ..

Cost = {48 .. 80}

20

43

Reverse Look-Ahead

0 3

12

12 20

16

12

16

49 50 51 5352 54 55 56 57 58 ..

Cost = {48}

48

48

20

44

Reverse Look-Ahead

0 3

12

48 49 50 51 5352 54 55 56 57 58 ..

1212

Cost = {48}

48

Inconsistent
12 12

45

Reverse Look-Ahead

0 3

12

12 20

16

12

16

48 49 50 51 5352 54 55 56 57 58 ..

Cost = {49 .. 80}

48

20

46

Reverse Look-Ahead

0 3

12

49 50 51 5352 54 55 56 57 58 ..

Cost = {49, 50}

48

48

504912 20

16

12

16

20

47

Reverse Look-Ahead

0 3

12

49 50 51 5352 54 55 56 57 58 ..

Cost = {49, 50}

48

48

5049Inconsistent

48

Reverse Look-Ahead

0 3

12

12 20

16

12

16

48 49 50 51 5352 54 55 56 57 58 ..

Cost = {51 .. 80}

48

504920

49

Reverse Look-Ahead

0 3

12

12 20

16

12

16

48 49 50 51 5352 54 55 56 57 58 ..

Cost = {51 .. 54}

48

5049

51 5352 54

20

50

Reverse Look-Ahead

0 3

12

12

16

12

16

48 49 50 51 5352 54 55 56 57 58 ..

Cost = {51 .. 54}

48

5049

51 5352 54

51

Reverse Look-Ahead

0 3

12

12

16

12

16

48 49 50 51 5352 54 55 56 57 58 ..

Cost = {51 .. 54}

48

5049

51 5352 54

{2, 3} 🠊 select value 2

52

Reverse Look-Ahead

0 3

12

12

16

12

16

48 49 50 51 5352 54 55 56 57 58 ..

Cost = {51 .. 80}

48

5049

51 5352 54

20

{1, 2, 3} 🠊 select value 2

20

Some considerations about Reverse Look-Ahead (RLA)

● Different exploration than BIVS
○ BIVS with and without RLA might not select the same value

● Different from MinDom
○ Value is picked in reduced domain, not initial one

● May deduce bounds on objective at each selection

● Cost not always smaller than BIVS
○ compared to

● Similar to destructive lower bound in scheduling
○ But used as a value selector instead

53

Are we there yet?

54

55

Combining the two methods

56

0 3

12

12 20

16

12

16

48 49 50 51 5352 54 55 56 57 58 ..

Cost = {48 .. 80}

distSucc0 distSucc1 distSucc2 distSucc3 sumDistsucc1 succ2 succ3succ0

Circuit Element0 Element1 Element3Element2 Sum Minimize

{1, 2, 3} {48 .. 80}{0, 2, 3} {0, 1, 3} {0, 1, 2} {12, 16, 20} {12, 16, 20} {12, 16, 20} {12, 16, 20}

20

57

0 3

12

12 20

16

12

16

48 49 50 51 5352 54 55 56 57 58 ..

Cost = {48}

distSucc0 distSucc1 distSucc2 distSucc3 sumDistsucc1 succ2 succ3succ0

Circuit Element0 Element1 Element3Element2 Sum Minimize

48

{1, 2, 3} {48}{0, 2, 3} {0, 1, 3} {0, 1, 2} {12, 16, 20} {12, 16, 20} {12, 16, 20} {12, 16, 20}

20

58

0 3

12

12 20

16

12

16

48 49 50 51 5352 54 55 56 57 58 ..

Cost = {48}

distSucc0 distSucc1 distSucc2 distSucc3 sumDistsucc1 succ2 succ3succ0

Circuit Element0 Element1 Element3Element2 Sum Minimize

48

{1, 2, 3} {48}{0, 2, 3} {0, 1, 3} {0, 1, 2} {12} {12} {12} {12}

20

59

0 3

12

20

16

12

16

48 49 50 51 5352 54 55 56 57 58 ..

Cost = {48}

distSucc0 distSucc1 distSucc2 distSucc3 sumDistsucc1 succ2 succ3succ0

Circuit Element0 Element1 Element3Element2 Sum Minimize

48

{2} {48}{0, 2, 3} {0, 1, 3} {0, 1, 2} {12} {12} {12} {12}

12 20

60

0 3

12

48 49 50 51 5352 54 55 56 57 58 ..

Cost = {48}

distSucc0 distSucc1 distSucc2 distSucc3 sumDistsucc1 succ2 succ3succ0

Circuit Element0 Element1 Element3Element2 Sum Minimize

48

{2} {48}{0, 2, 3} {0, 1, 3} {0, 1, 2} {12} {12} {12} {12}

1212 12 12

Inconsistency
ignored:
Circuit

constraint
deactivated

61

48 49 50 51 5352 54 55 56 57 58 ..

Cost = {48}

distSucc0 distSucc1 distSucc2 distSucc3 sumDistsucc1 succ2 succ3succ0

Circuit Element0 Element1 Element3Element2 Sum Minimize

48

{2} {48}{0, 2, 3} {0, 1, 3} {0, 1, 2} {12} {12} {12} {12}

{2} 🠊 select value 2
0 3

12

20

16

12

16

12 20

RLA + RF

● Faster than BIVS+RF and RLA

● Still slower than MinDom (obviously)
but more informed

● Deduces less bounds than RLA
○ Less iterations can be expected

○ Fixpoint not as strong

○ Example with TSP: no bounds deduced

● On the TSP: requires only 2 constraints propagation (cost:)
○ 1 Sum and 1 Element, no matter the instance size

○ RLA+RF cost:

○ BIVS+RF cost: 62

Same performances as greedy!

63

What about other problems?

64

XCSP3

● Competition from 2023 considered

○ Instances too voluminous discarded

○ 18 problems, 232 instances

○ Various problems: scheduling, routing, assignments, …

● Black-Box optimization

● Variable Selection: DomWDeg + Last Conflict

● Timeout of 30 minutes

65

Experiments on XCSP3

66

Experiments on XCSP3

67

68Gap (#instances with a feasible solution found)

Wrapping up the results

● RF adds value on both BIVS and RLA

● MinDom finds more feasible solutions
○ Hypothesis: more nodes in the search tree are explored, giving variable selection

more opportunity to learn

● RLA+RF gives the best gaps on average

● Best heuristic is problem-dependent
○ Result also observed on papers about variable selection heuristics

69

Conclusion

● BIVS is an efficient but costly heuristic for selecting
branching values

● We presented 2 methods to lower its cost
○ Restricted Fixpoint, considering a subset of constraints
○ Reverse Look-Ahead, shrinking the objective and

observing the impact on branching variable
● Both methods are easy to implement
● They improved the performances (in both speed and

objective values)
● Could become default value selection in CP solvers
● Algorithms, source code and more experiments

available in the paper
70

Conclusion

● BIVS is an efficient but costly heuristic for selecting
branching values

● We presented 2 methods to lower its cost
○ Restricted Fixpoint, considering a subset of constraints
○ Reverse Look-Ahead, shrinking the objective and

observing the impact on branching variable
● Both methods are easy to implement
● They improved the performances (in both speed and

objective values)
● Could become default value selection in CP solvers
● Algorithms, source code and more experiments

available in the paper
71Thanks for your attention!

Experiments on XCSP3

72

● BIVS author’s advice:
○ Use it for domain sizes <= 100
○ If domain size too large: consider only the

bounds of the domain

73

Runtime (s)

Primal gap

Differences with ranking values before the search

● Consider BinPacking problem
● Minimize maximum load

74

A

B

C

Bin 0 Bin 1

Initial ranking: all bins have
same values

Differences with ranking values before the search

● Consider BinPacking problem
● Minimize maximum load

75

A

B

C

Bin 0 Bin 1

Initial ranking: all bins have
same values

A

B

C

Bin 0 Bin 1

dom(B) = {0, 1}
A

B

C

A BC

MinDom /
Initial ranking

BIVS / RLA

How to run a Restricted Fixpoint in a solver

● Example in Choco-Solver
● setPassive() method from propagator: deactivate its propagation

○ Temporary, deactivation removed upon backtrack

76

distSucc0 distSucc1 distSucc2 distSucc3 sumDistsucc1 succ2 succ3succ0

Circuit Element0 Element1 Element3Element2 Sum Minimize

parent
parent parent

parent

How to run a Restricted Fixpoint in a solver

● Example in Choco-Solver
● setPassive() method from propagator: deactivate its propagation

○ Temporary, deactivation removed upon backtrack
● Starting from branching variable, deactivate in the scope constraints that are

not parent and not already marked

77

distSucc0 distSucc1 distSucc2 distSucc3 sumDistsucc1 succ2 succ3succ0

Circuit Element0 Element1 Element3Element2 Sum Minimize

parent
parent

parent parent

In scope and
deactivated

How to run a Restricted Fixpoint in a solver

● Example in Choco-Solver
● setPassive() method from propagator: deactivate its propagation

○ Temporary, deactivation removed upon backtrack
● Starting from branching variable, deactivate in the scope constraints that are

not parent and not already marked

78

distSucc0 distSucc1 distSucc2 distSucc3 sumDistsucc1 succ2 succ3succ0

Circuit Element0 Element1 Element3Element2 Sum Minimize

parent
parent

parent parent

How to run a Restricted Fixpoint in a solver

● Example in Choco-Solver
● setPassive() method from propagator: deactivate its propagation

○ Temporary, deactivation removed upon backtrack
● Starting from branching variable, deactivate in the scope constraints that are

not parent and not already marked

79

distSucc0 distSucc1 distSucc2 distSucc3 sumDistsucc1 succ2 succ3succ0

Circuit Element0 Element1 Element3Element2 Sum Minimize

parent
parent parent

parent

How to run a Restricted Fixpoint in a solver

● Example in Choco-Solver
● setPassive() method from propagator: deactivate its propagation

○ Temporary, deactivation removed upon backtrack
● Starting from branching variable, deactivate in the scope constraints that are

not parent and not already marked

80

distSucc0 distSucc1 distSucc2 distSucc3 sumDistsucc1 succ2 succ3succ0

Circuit Element0 Element1 Element3Element2 Sum Minimize

parent
parent parent

parent

How to run a Restricted Fixpoint in a solver

● Example in Choco-Solver
● setPassive() method from propagator: deactivate its propagation

○ Temporary, deactivation removed upon backtrack
● Starting from branching variable, deactivate in the scope constraints that are

not parent and not already marked

81

distSucc0 distSucc1 distSucc2 distSucc3 sumDistsucc1 succ2 succ3succ0

Circuit Element0 Element1 Element3Element2 Sum Minimize

parent
parent parent

parent

How to run a Restricted Fixpoint in a solver

● Example in Choco-Solver
● setPassive() method from propagator: deactivate its propagation

○ Temporary, deactivation removed upon backtrack
● Starting from branching variable, deactivate in the scope constraints that are

not parent and not already marked

82

distSucc0 distSucc1 distSucc2 distSucc3 sumDistsucc1 succ2 succ3succ0

Circuit Element0 Element1 Element3Element2 Sum Minimize

parent
parent parent

parent

How to run a Restricted Fixpoint in a solver

● Example in Choco-Solver
● setPassive() method from propagator: deactivate its propagation

○ Temporary, deactivation removed upon backtrack
● Starting from branching variable, deactivate in the scope constraints that are

not parent and not already marked

83

distSucc0 distSucc1 distSucc2 distSucc3 sumDistsucc1 succ2 succ3succ0

Circuit Element0 Element1 Element3Element2 Sum Minimize

parent
parent parent

parent

How to run a Restricted Fixpoint in a solver
● This is but one way to implement it
● Others are possible

○ For instance propagating “manually” the constraints (require to implement another
fixpoint method, taking as input the constraints to consider)

● Advantage of this one:
○ Can tell if shortest paths are still valid when parsing them
○ No need to implement a new fixpoint method, no weird hidden interactions with solver

84

distSucc0 distSucc1 distSucc2 distSucc3 sumDistsucc1 succ2 succ3succ0

Circuit Element0 Element1 Element3Element2 Sum Minimize

parent
parent parent

parent

