Black-Box Value Heuristics for solving Optimization problems with Constraint Programming *Augustin Delecluse*, Pierre Schaus

CP = Model + Search

- Branching commonly decomposed in 2 steps
 - Select an unfixed variable x to branch on
 - Select a value v to assign to the branching variable x
- Extensive work dedicated to variable selection based on *first-fail principle*
 - Pick variable with smallest domain
 - Pick variable involved in many failures / recent conflicts
 - Combinaison of the two (e.g. DomWDeg + Last Conflict)
- Few work dedicated on value selection
 - Picking the minimum value of the domain (MinDom) remains the popular default choice

 $x \neq v$

x = v/

- Has no consideration for the objective
- Can lead to bad first solution
 - Large search tree
 - Large runtime
- Example with TSP

- Has no consideration for the objective
- Can lead to bad first solution
 - Large search tree
 - Large runtime
- Example with TSP

Dom = {**1**, 2, 3} 3 16 12 20 12 16 2

- Has no consideration for the objective
- Can lead to bad first solution
 - Large search tree
 - Large runtime
- Example with TSP

- Has no consideration for the objective
- Can lead to bad first solution
 - Large search tree
 - Large runtime
- Example with TSP

Dom = $\{2, 3\}$

- Has no consideration for the objective
- Can lead to bad first solution
 - Large search tree
 - Large runtime
- Example with TSP

Dom = {**2**}

- Has no consideration for the objective
- Can lead to bad first solution
 - Large search tree
 - Large runtime
- Example with TSP

First solution cost with MinDom: 72

First solution cost with MinDom: 72

Best solution cost: 56

First solution found by selecting nearest neighbor!

MinDom (black-box) compared to nearest neighbor (greedy white-box)

- Instances from TSPLib
- Variable selection: DomWDeg + Last Conflict
- Average primal gap reported
- Value close to 100% : no solution
- Value close to 0% : best found solution
- The lower the better

How to mimic nearest neighbor selection in a black-box fashion?

- Look at every value v of the branching variable x
- What is the impact on the objective if x = v ?
- Return the value with the best impact on the objective

- Look at every value v of the branching variable x
- What is the impact on the objective if x = v ?
- Return the value with the best impact on the objective

Cost = {48 .. 80}

Fages, J. G., & Prud'Homme, C. (2017, November). Making the first solution good!. In 2017 IEEE 29th International Conference on Tools with Artificial Intelligence (ICTAI) (pp. 1073-1077). IEEE.

- Look at every value v of the branching variable x
- What is the impact on the objective if x = v ?
- Return the value with the best impact on the objective
 - 1 🗆 LB = 60

Cost = {**60** .. 76}

- Look at every value v of the branching variable x
- What is the impact on the objective if x = v ?
- Return the value with the best impact on the objective
 - 1 □ LB = 60

Cost = {**52** .. 68}

- Look at every value v of the branching variable x
- What is the impact on the objective if x = v ?
- Return the value with the best impact on the objective
 - 1 🗆 LB = 60
 - 2 🗆 LB = 52
 - 3 🗆 LB = 56

Cost = {**56** .. 72}

- Look at every value v of the branching variable x
- What is the impact on the objective if x = v ?
- Return the value with the best impact on the objective

Cost = {48 .. 80}

- 1 □ LB = 60
- 2
 LB = 52
 select value 2
- 3 🗆 LB = 56

BIVS in practice

Problem with BIVS: its cost

- Time consuming
- Author's advice:
 - Use it for domain sizes <= 100
 - If domain size too large: consider only the bounds of the domain
- Not suited for full exhaustive search on large problems

Let's try to reduce the cost (part 1)

 $\mathcal{O}\left(\left|dom(x)\right|\cdot\mathcal{F}\right)$ **Cost of Fixpoint**

{1}

SUCC₀

SUCC₁

Circuit

{1}

SUCC₀

{2, 3}

SUCC₁

Circuit

{1}

SUCC₀

{2, 3}

• Very little contributions from many constraints

SUCC₂

Element

SUCC₂

Element,

• Let's skip some of them

SUCC₁

Circuit

{1}

SUCC

• Consider only the constraints on the shortest path of the constraint network

• Consider only the constraints on the shortest path of the constraint network

{0, 1, 3}

SUCC₂

Element

{1}

SUCC

{0, 2, 3}

SUCC₁

• Consider only the constraints on the shortest path of the constraint network

{0, 1, 2}

SUCC₃

{20}

distSucc

Consider only the constraints on the 12 20 20 12 shortest path of the constraint network 16 2 {12, 16, 20} **{56 .. 80}** {1} {0, 2, 3} {0, 1, 3} {0, 1, 2} {20} {12, 16, 20} {12, 16, 20} distSucc₃ distSucc distSucc₁ distSucc₂ sumDist SUCC SUCC₁ SUCC₂ SUCC₃ Sum 35

0

3

16

Some considerations about Restricted Fixpoint (RF)

- Less informed than a regular fixpoint
 - BIVS with and without RF might not select the same value
- But much faster
 - On a TSP, only 2 constraints are considered, no matter the TSP size
- Can be implemented by deactivating temporarily constraints out of interest
- Cheap to compute: shortests paths are precomputed before the search

Applying RF on BIVS

Let's try to reduce the cost (part 2)

 $\mathcal{O}\left(\left|dom(x)\right|\cdot\mathcal{F}\right)$ Size of domain

Bound-Impact Value Selection (BIVS)

- Look at every value v of the **branching variable** x
- What is the impact on the objective if x = v ?
- Return the value with the best impact on the objective
- Start from variable, look at objective

Bound-Impact Value Selection (BIVS)

- Look at every value v of the **branching variable** x
- What is the impact on the objective if x = v ?
- Return the value with the best impact on the objective
- Start from variable, look at objective

- Look at values v of the objective
- What is the impact on the branching variable if objective shrink to interval obj <= v ?
- Return value found when objective shrink to best interval
- Start from objective, look at variable

- Look at values v of the objective
- What is the impact on the branching variable if objective shrink to interval obj <= v ?
- Return value found when objective shrink to best interval
- Start from objective, look at variable

Cost = {48 .. 80}

48	49	50	51	52	53	54	55	56	57	58	-
----	----	----	----	----	----	----	----	----	----	----	---

48	49	50	51	52	53	54	55	56	57	58	-
40									2	1	
48									0 =	= 1	

Cost = {48}

Cost = {**49** .. 80}

Cost = {49, 50}

Cost = {49, 50}

2

1

Cost = {**51** .. 80}

Cost = {51 .. 54}

 $\{1, 2, 3\} \square$ select value 2

Cost = {**51** .. 80}

Some considerations about Reverse Look-Ahead (RLA)

- Different exploration than BIVS
 - BIVS with and without RLA might not select the same value
- Different from MinDom
 - Value is picked in reduced domain, not initial one
- May deduce bounds on objective at each selection
- Cost not always smaller than BIVS
 - $\mathcal{O}\left(\log_2(|dom(obj)|) \cdot \mathcal{F}\right)$ compared to $\mathcal{O}\left(|dom(x)| \cdot \mathcal{F}\right)$
- Similar to destructive lower bound in scheduling
 - But used as a value selector instead

Are we there yet?

Combining the two methods

RLA + RF

- Faster than BIVS+RF and RLA
- Still slower than MinDom (obviously) but more informed
- Deduces less bounds than RLA
 - Less iterations can be expected
 - Fixpoint not as strong
 - Example with TSP: no bounds deduced
- On the TSP: requires only 2 constraints propagation (cost: $\tilde{\mathcal{F}}$)
 - 1 Sum and 1 Element, no matter the instance size
 - \circ RLA+RF cost: $\mathcal{O}(\tilde{\mathcal{F}})$
 - BIVS+RF cost: $\mathcal{O}(|dom(x)| \cdot \tilde{\mathcal{F}})$

Same performances as greedy!

What about other problems?

XCSP³

- Competition from 2023 considered
 - Instances too voluminous discarded
 - 18 problems, 232 instances
 - Various problems: scheduling, routing, assignments, ...
- Black-Box optimization
- Variable Selection: DomWDeg + Last Conflict
- Timeout of 30 minutes

Experiments on XCSP³

66

Experiments on XCSP³

Problem (#instances)	Min	BIVS	BIVS+RF	RLA	RLA+RF	
AircraftAssemblyLine (20)	95.00(1)	90.00(2)	100.00(0)	95.00(1)	95.00(1)	
CarpetCutting (20)	61.29(9)	57.17(9)	65.48(8)	62.67(8)	54.48(11)	
GBACP (20)	78.86 (11)	61.43 (8)	79.69(10)	69.54(9)	85.51(9)	
Generalized MKP (15)	49.74 (15)	6.78 (14)	6.81(14)	26.57(12)	20.26(13)	
HCPizza (10)	33.56 (10)	34.91(10)	34.43(10)	34.67(10)	34.62(10)	
Hsp (18)	0.00(18)	5.56(17)	5.56(17)	5.56(17)	0.00(18)	
KMedian (15)	50.84(8)	57.32(7)	43.96 (9)	56.01(7)	50.84(8)	
KidneyExchange (14)	44.63 (14)	85.71(3)	51.11(10)	43.68 (13)	52.79(10)	
LargeScaleScheduling (9)	66.76 (6)	66.83 (6)	66.83 (6)	45.56(5)	34.44(6)	
PSP1(8)	100.00(0)	100.00(0)	87.50(1)	100.00(0)	100.00(0)	
PSP2(8)	87.50 (1)	87.50 (1)	87.62(1)	87.50 (1)	87.66(1)	
ProgressiveParty (7)	57.14(3)	57.14(3)	57.14(3)	57.14(3)	57.14(3)	
RIP (12)	5.06(12)	6.31(12)	4.59(12)	3.24 (12)	4.78(12)	
Rulemining (9)	100.00(0)	100.00(0)	100.00(0)	100.00(0)	100.00(0)	
SREFLP (15)	7.27(15)	3.08 (15)	7.44(15)	8.78(15)	7.72(15)	
Sonet (16)	1.40 (16)	2.28(16)	3.42(16)	2.42(16)	3.15(16)	
TSPTW1 (8)	87.81 (1)	100.00(0)	87.84 (1)	87.81 (1)	87.50(1)	
TSPTW2 (8)	75.19(2)	87.50 (1)	75.19(2)	75.42 (2)	75.24 (2)	
All (232)	52.02 (142)	51.04 (124)	50.23(135)	49.85(132)	49.52 (136)	

Gap (#instances with a feasible solution found)

Wrapping up the results

- RF adds value on both BIVS and RLA
- MinDom finds more feasible solutions
 - Hypothesis: more nodes in the search tree are explored, giving variable selection more opportunity to learn
- RLA+RF gives the best gaps on average
- Best heuristic is problem-dependent
 - Result also observed on papers about variable selection heuristics

Black-Box Value Heuristics for Solving Optimization Problems with Constraint Programming Augustin Delecture^{1,2} Pierre Schaus¹ "RTCMM Ulcouving Regium - TPALL Refutim

Conclusion

- BIVS is an efficient but costly heuristic for selecting branching values
- We presented 2 methods to lower its cost
 - **Restricted Fixpoint**, considering a subset of constraints
 - Reverse Look-Ahead, shrinking the objective and observing the impact on branching variable
- Both methods are easy to implement
- They improved the performances (in both speed and objective values)
- Could become default value selection in CP solvers
- Algorithms, source code and more experiments available in the paper

Black-Box Value Heuristics for Solving Optimization Problems with Constraint Programming Augustin Delecture^{1,2} Pierre Schaus¹ "RTCMM Ulcouving Regium - TPALL Refutim

Conclusion

- BIVS is an efficient but costly heuristic for selecting branching values
- We presented 2 methods to lower its cost
 - **Restricted Fixpoint**, considering a subset of constraints
 - Reverse Look-Ahead, shrinking the objective and observing the impact on branching variable
- Both methods are easy to implement
- They improved the performances (in both speed and objective values)
- Could become default value selection in CP solvers
- Algorithms, source code and more experiments available in the paper

Thanks for your attention!

Experiments on XCSP³

Differences with ranking values before the search

- Consider BinPacking problem
- Minimize maximum load

Initial ranking: all bins have same values

Differences with ranking values before the search

- Consider BinPacking problem
- Minimize maximum load

B

Α

Bin 0 Bin 1

- Example in Choco-Solver
- setPassive() method from propagator: deactivate its propagation
 - Temporary, deactivation removed upon backtrack

- Example in Choco-Solver
- setPassive() method from propagator: deactivate its propagation
 - Temporary, deactivation removed upon backtrack
- Starting from branching variable, deactivate in the scope constraints that are not parent and not already marked

- Example in Choco-Solver
- setPassive() method from propagator: deactivate its propagation
 - Temporary, deactivation removed upon backtrack
- Starting from branching variable, deactivate in the scope constraints that are not parent and not already marked

- Example in Choco-Solver
- setPassive() method from propagator: deactivate its propagation
 - Temporary, deactivation removed upon backtrack
- Starting from branching variable, deactivate in the scope constraints that are not parent and not already marked

- Example in Choco-Solver
- setPassive() method from propagator: deactivate its propagation
 - Temporary, deactivation removed upon backtrack
- Starting from branching variable, deactivate in the scope constraints that are not parent and not already marked

- Example in Choco-Solver
- setPassive() method from propagator: deactivate its propagation
 - Temporary, deactivation removed upon backtrack
- Starting from branching variable, deactivate in the scope constraints that are not parent and not already marked

- Example in Choco-Solver
- setPassive() method from propagator: deactivate its propagation
 - Temporary, deactivation removed upon backtrack
- Starting from branching variable, deactivate in the scope constraints that are not parent and not already marked

- Example in Choco-Solver
- setPassive() method from propagator: deactivate its propagation
 - Temporary, deactivation removed upon backtrack
- Starting from branching variable, deactivate in the scope constraints that are not parent and not already marked

- This is but one way to implement it
- Others are possible
 - For instance propagating "manually" the constraints (require to implement another fixpoint method, taking as input the constraints to consider)
- Advantage of this one:
 - Can tell if shortest paths are still valid when parsing them
 - No need to implement a new fixpoint method, no weird hidden interactions with solver

