CSPs with Few Alien Constraints

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Peter Jonsson (Linköping) Victor Lagerkvist (Linköping) George Osipov (Oxford + Royal Holloway + Linköping)

- Alien Constraints
- Motivation
- Finite-domain CSPs
- Equality Languages

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

• Future Work

Alien Constraints

$\mathsf{CSP}(\mathcal{A})$

$\mathsf{CSP}(\mathcal{A})$

3-Colourability problem: CSP(A) with $A = \{\neq_3\}$

・ロト < 団ト < 巨ト < 巨ト 三 のへで

CSP(A) 3-Colourability problem: CSP(A) with $A = \{\neq_3\}$ $\neq_3 = \{(1,0), (0,1), (1,2), (2,1), (0,2), (2,0)\}$

$\mathsf{CSP}(\mathcal{A}\cup\mathcal{B})$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

$\mathsf{CSP}(\mathcal{A} \cup \mathcal{B})$

 \mathcal{A} contains *background* relations \mathcal{B} contains *alien* relations

(ロ)、(型)、(E)、(E)、 E) のQ(()

 $\mathsf{CSP}(\mathcal{A} \cup \mathcal{B})$

 ${\mathcal A}$ contains *background* relations ${\mathcal B}$ contains *alien* relations

 $\mathsf{CSP}_{\leq k}(\mathcal{A} \cup \mathcal{B})$

 $\mathsf{CSP}(\mathcal{A} \cup \mathcal{B})$

 ${\mathcal A}$ contains $\mathit{background}$ relations

 ${\mathcal B}$ contains *alien* relations

 $\mathsf{CSP}_{\leq k}(\mathcal{A} \cup \mathcal{B})$

Instances contain at most k \mathcal{B} -constraints

Basic assumption:

(1) $\mathsf{CSP}(\mathcal{A})$ is polynomial-time solvable (2) $\mathsf{CSP}(\mathcal{A} \cup \mathcal{B})$ is NP-hard

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Basic assumption:

(1) $\mathsf{CSP}(\mathcal{A})$ is polynomial-time solvable (2) $\mathsf{CSP}(\mathcal{A} \cup \mathcal{B})$ is NP-hard

Basic question: What is the largest k such that $CSP_{\leq k}(A \cup B)$ is polynomial-time solvable?

. . .

The polynomial-time solvable fragments of $\mathsf{CSP}(\mathcal{A})$ are known in many cases.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

- Finite domains
- Allen's algebra
- Equality languages
- Temporal relations

The polynomial-time solvable fragments of $\text{CSP}(\mathcal{A})$ are known in many cases.

- Finite domains
- Allen's algebra
- Equality languages
- Temporal relations

Quite difficult to work with!

Adding a small number of relations outside \mathcal{A} can be really helpful $\longrightarrow \mathsf{CSP}_{\leq k}(\mathcal{A} \cup \mathcal{B})$

We illustrate this idea with model checking, but there are many other examples. Global constraints (e.g. the all-diff constraint) is one of them.

Typically, there are two possibilities.

(1) $\mathsf{CSP}_{\leq k}(\mathcal{A} \cup \mathcal{B})$ is polynomial-time solvable for every fixed k, or

(2) there exists a fixed k such that $CSP_{\leq k}(A \cup B)$ is NP-hard.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Typically, there are two possibilities.

(1) $\mathsf{CSP}_{\leq k}(\mathcal{A} \cup \mathcal{B})$ is polynomial-time solvable for every fixed k, or

(2) there exists a fixed k such that $CSP_{\leq k}(A \cup B)$ is NP-hard.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Case (2) is almost always bad.

Case (1) is better, and sometimes much better.

Case (1a) $f(k) \cdot poly(||I||)$

Case (1b) $||I||^{f(k)}$


```
Case (1a) f(k) \cdot poly(||I||)
```

```
Case (1b) ||I||^{f(k)}
```

Parameterized complexity.

Case (1a) $\text{CSP}_{\leq k}(\mathcal{A} \cup \mathcal{B})$ is fixed-parameter tractable (FPT) with parameter k.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Case (1b) $CSP_{\leq k}(\mathcal{A} \cup \mathcal{B})$ is in XP.

Case (2) $CSP_{\leq k}(\mathcal{A} \cup \mathcal{B})$ is pNP-hard.

```
Redundant(A)
"Can one remove constraint c without changing the set of solutions?"
```

```
Impl(A)
"Is the set of solutions to I_1 a subset of the solutions to I_2?"
```

```
Equiv(\mathcal{A})
"Do I_1 and I_2 have the same set of solutions?"
```

```
Redundant(A)
"Can one remove constraint c without changing the set of solutions?"
```

```
\operatorname{Impl}(\mathcal{A})
"Is the set of solutions to I_1 a subset of the solutions to I_2?"
```

```
Equiv(A)
"Do I_1 and I_2 have the same set of solutions?"
```

Many applications are described in the literature.

```
Complexity classifications are known in special cases (e.g. Boolean domains).
```

These three problems are polynomial-time interreducible.

These three problems are polynomial-time interreducible.

We show that the complexity of them can be described in terms of $CSP_{<1}(\mathcal{A} \cup \mathcal{B})$ for suitably chosen \mathcal{B} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

"Horn-like" disjunctive constraints have many applications.

$$(x \lor \neg y \lor \neg z) \land (y \lor \neg w) \land (z)$$

"Horn-like" disjunctive constraints have many applications.

$$(x \lor \neg y \lor \neg z) \land (y \lor \neg w) \land (z)$$

The computational complexity of such constraints is known.

 $\mathsf{CSP}(\mathcal{A} \lor \mathcal{B}^*)$ is in P

if and only if

(1) A and B satisfy an algebraic condition (1-independence) and
(2) CSP<1(A∪B) is in P.

Finite-domain CSPs

Theorem. Let \mathcal{A}, \mathcal{B} be constraint languages over a finite domain \mathcal{A} . Then, $CSP_{\leq}(\mathcal{A} \cup \mathcal{B})$ is either in FPT or pNP-hard.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Theorem. Let \mathcal{A}, \mathcal{B} be constraint languages over a finite domain \mathcal{A} . Then, $CSP_{\leq}(\mathcal{A} \cup \mathcal{B})$ is either in FPT or pNP-hard.

The proof is based on ideas from the universal-algebraic approach to CSPs.

Theorem. Let \mathcal{A}, \mathcal{B} be constraint languages over a finite domain \mathcal{A} . Then, $CSP_{\leq}(\mathcal{A} \cup \mathcal{B})$ is either in FPT or pNP-hard.

The proof is based on ideas from the universal-algebraic approach to CSPs.

Warning: This does not imply that $CSP_{\leq 1}(\mathcal{A} \cup \mathcal{B})$ is NP-hard whenever $CSP_{\leq}(\mathcal{A} \cup \mathcal{B})$ is pNP-hard.

Thus, we cannot say much about problems such as Redundant(A), Impl(A), and Equiv(A).

Theorem. Let \mathcal{A}, \mathcal{B} be constraint languages over the two-element domain $\{0, 1\}$. Assume $CSP(\mathcal{A})$ is polynomial-time solvable and $CSP(\mathcal{A} \cup \mathcal{B})$ is NP-hard. Then the following hold.

(1) If \mathcal{A} is Schaefer, then $CSP_{\leq}(\mathcal{A} \cup \mathcal{B})$ is in FPT.

(2) If (i) \mathcal{A} is not Schaefer, (ii) \mathcal{A} is both 0- and 1-valid, (iii) \mathcal{B} contains a 0/1-pair, and (iv) \mathcal{B} is 0- or 1-valid, then $CSP_{\leq 2}(\mathcal{A} \cup \mathcal{B})$ is NP-hard and $CSP_{\leq 1}(\mathcal{A} \cup \mathcal{B})$ is polynomial-time solvable.

A D > 4 目 > 4 目 > 4 目 > 5 4 回 > 3 Q Q

(3) Otherwise, $CSP_{\leq 2}(\mathcal{A} \cup \mathcal{B})$ is NP-hard.

Theorem. Let \mathcal{A}, \mathcal{B} be constraint languages over the two-element domain $\{0, 1\}$. Assume $CSP(\mathcal{A})$ is polynomial-time solvable and $CSP(\mathcal{A} \cup \mathcal{B})$ is NP-hard. Then the following hold.

(1) If \mathcal{A} is Schaefer, then $CSP_{\leq}(\mathcal{A} \cup \mathcal{B})$ is in FPT.

(2) If (i) \mathcal{A} is not Schaefer, (ii) \mathcal{A} is both 0- and 1-valid, (iii) \mathcal{B} contains a 0/1-pair, and (iv) \mathcal{B} is 0- or 1-valid, then $CSP_{\leq 2}(\mathcal{A} \cup \mathcal{B})$ is NP-hard and $CSP_{\leq 1}(\mathcal{A} \cup \mathcal{B})$ is polynomial-time solvable.

(3) Otherwise, $CSP_{\leq 2}(\mathcal{A} \cup \mathcal{B})$ is NP-hard.

The proof is based on a Schaefer-like analysis of the relations (not so much algebra).

A D > 4 目 > 4 目 > 4 目 > 5 4 回 > 3 Q Q

Corollary. Let \mathcal{A} be a language over a two-element domain. Then Redundant(\mathcal{A}), Impl(\mathcal{A}), and Equiv(\mathcal{A}) are either polynomial-time solvable or NP-hard.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Equality Languages

A constraint language \mathcal{A} is an *equality language* if the relations in \mathcal{A} are first-order definable in $(\mathbb{N}; =)$. N.B. Infinite domain!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A constraint language \mathcal{A} is an *equality language* if the relations in \mathcal{A} are first-order definable in $(\mathbb{N}; =)$. N.B. Infinite domain!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$R(x, y, z) \equiv (x = y) \lor (x = z)$$
$$S(x, y, z) \equiv (x = y \lor x \neq z) \land (y = z \lor x \neq y)$$

A constraint language \mathcal{A} is an *equality language* if the relations in \mathcal{A} are first-order definable in $(\mathbb{N}; =)$. N.B. Infinite domain!

$$R(x, y, z) \equiv (x = y) \lor (x = z)$$
$$S(x, y, z) \equiv (x = y \lor x \neq z) \land (y = z \lor x \neq y)$$

The complexity of CSP(\mathcal{A}) is known for all equality languages \mathcal{A} .

The complexity of equality languages is a necessary ingredient in *all* classifications of more expressive classes.

Thus, natural to study $\text{CSP}_{\leq k}(\mathcal{A} \cup \mathcal{B})$ for equality languages \mathcal{A}, \mathcal{B} .

Theorem. Let \mathcal{A}, \mathcal{B} be equality languages such that $CSP(\mathcal{A})$ is polynomial-time solvable and $CSP(\mathcal{A} \cup \mathcal{B})$ is NP-hard.

(1) If \mathcal{A} is Horn, $CSP_{\leq}(\mathcal{A} \cup \mathcal{B})$ is in FPT.

(2) If \mathcal{A} is not Horn, $CSP_{\leq}(\mathcal{A} \cup \mathcal{B})$ is pNP-hard. Moreover, there exists an integer $c = c(\mathcal{A})$ such that $CSP_{\leq}(\mathcal{A} \cup \mathcal{B})$ is polynomial-time solvable whenever $\neq_c \notin \langle \mathcal{A} \cup \mathcal{B} \rangle_{\leq k}$, and is NP-hard otherwise.

Theorem. Let \mathcal{A}, \mathcal{B} be equality languages such that $CSP(\mathcal{A})$ is polynomial-time solvable and $CSP(\mathcal{A} \cup \mathcal{B})$ is NP-hard.

(1) If \mathcal{A} is Horn, $\mathsf{CSP}_{\leq}(\mathcal{A} \cup \mathcal{B})$ is in FPT.

(2) If \mathcal{A} is not Horn, $CSP_{\leq}(\mathcal{A} \cup \mathcal{B})$ is pNP-hard. Moreover, there exists an integer $c = c(\mathcal{A})$ such that $CSP_{\leq}(\mathcal{A} \cup \mathcal{B})$ is polynomial-time solvable whenever $\neq_c \notin \langle \mathcal{A} \cup \mathcal{B} \rangle_{\leq k}$, and is NP-hard otherwise.

The proof of based on the universal-algebraic approach combined with a recent complexity classification of MinCSP for equality constraints.

A D > 4 目 > 4 目 > 4 目 > 5 4 回 > 3 Q Q

Corollary. Let \mathcal{A} be an equality language. Then Redundant(\mathcal{A}), Impl(\mathcal{A}), and Equiv(\mathcal{A}) are either polynomial-time solvable or NP-hard.

・ロト・日本・ヨト・ヨト・日・ つへぐ

Future Work

Refined classification for finite domains (that covers Redundant(A), Impl(A), and Equiv(A)).

Classification for other infinite-domain CSPs.

Improved algebraic toolbox for alien constraints.

Are there \mathcal{A} and \mathcal{B} such that CSP_{\leq} is in XP but not in FPT?

The alien constraints framework is one way of expanding the concept of "tractable CSP". Other ways?

A D > 4 目 > 4 目 > 4 目 > 5 4 回 > 3 Q Q