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A contains background relations

B contains alien relations

CSP(AUB)

Instances contain at most k B-constraints
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Basic assumption:

(1) CSP(A) is polynomial-time solvable
(2) CSP(,A U B) is NP-hard

Basic question: What is the largest k such that CSP<,(A U B)
is polynomial-time solvable?
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Motivation |

The polynomial-time solvable fragments of CSP(.A) are known
in many cases.

® Finite domains

Allen’s algebra

Equality languages

® Temporal relations

Quite difficult to work with!

Adding a small number of relations outside A can be really
helpful — CSP< (AU B)

We illustrate this idea with model checking, but there are many
other examples. Global constraints (e.g. the all-diff constraint)
is one of them.
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Motivation |
Typically, there are two possibilities.

(1) CSP<(AU B) is polynomial-time solvable for every fixed k,
or

(2) there exists a fixed k such that CSP<,(A U B) is NP-hard.

Case (2) is almost always bad.

Case (1) is better, and sometimes much better.
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Case (1a) f(k) - poly(I|]])

Case (1b) ||/]|f<)

Parameterized complexity.

Case (1a) CSP<x(A U B) is fixed-parameter tractable (FPT)
with parameter k.

Case (1b) CSP<4(A U B) is in XP.

Case (2) CSP<,(A U B) is pNP-hard.
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Motivation Il

Redundant(.A)
"Can one remove constraint ¢ without changing the
set of solutions?"

Impl(.A)

"|s the set of solutions to /; a subset of the solutions to /7"

Equiv(.A)

"Do /; and b have the same set of solutions?"
Many applications are described in the literature.

Complexity classifications are known in special cases (e.g.
Boolean domains).
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Motivation Il
These three problems are polynomial-time interreducible.

We show that the complexity of them can be described in terms
of CSP<1(.A U B) for suitably chosen 5.
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Motivation Il
"Horn-like" disjunctive constraints have many applications.

(xVayV-az)A(yV-w)A(z)

The computational complexity of such constraints is known.
CSP(AV B*)isin P
if and only if

(1) A and B satisfy an algebraic condition (I-independence) and
(2) CSPSl(AU B) isin P.
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Theorem. Let A, B be constraint languages over a finite
domain A. Then, CSP<(.A U B) is either in FPT or pNP-hard.

The proof is based on ideas from the universal-algebraic
approach to CSPs.

Warning: This does not imply that CSP<1(A U B) is NP-hard
whenever CSP< (A U B) is pNP-hard.

Thus, we cannot say much about problems such as
Redundant(.A), Impl(A), and Equiv(.A).



Theorem. Let A, B be constraint languages over the
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contains a 0/1-pair, and (iv) B is 0- or 1-valid, then
CSP<2(AU B) is NP-hard and CSP<1(A U B) is
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Theorem. Let A, B be constraint languages over the
two-element domain {0,1}. Assume CSP(.A) is polynomial-time
solvable and CSP(A U B) is NP-hard. Then the following hold.

(1) If Ais Schaefer, then CSP<(AU B) is in FPT.

(2) If (i) A is not Schaefer, (ii) A is both 0- and 1-valid, (iii) B
contains a 0/1-pair, and (iv) B is 0- or 1-valid, then
CSP<2(AU B) is NP-hard and CSP<1(A U B) is
polynomial-time solvable.

(3) Otherwise, CSP<2(A U B) is NP-hard.

The proof is based on a Schaefer-like analysis of the relations
(not so much algebra).



Corollary. Let A be a language over a two-element domain.
Then Redundant(A), Impl(.A), and Equiv(.A) are either
polynomial-time solvable or NP-hard.
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A constraint language A is an equality language if the relations
in A are first-order definable in (N;=). N.B. Infinite domain!

R(x,y,z)=(x=y)V(x=2z)
S(x,y,z) =(x=yVx#z)N(y=zVx#y)

The complexity of CSP(.A) is known for all equality languages
A.

The complexity of equality languages is a necessary ingredient
in all classifications of more expressive classes.

Thus, natural to study CSP<x(A U B) for equality languages
A, B.
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Theorem. Let A, B be equality languages such that CSP(A) is
polynomial-time solvable and CSP(.A U B) is NP-hard.

(1) If Ais Horn, CSP<(AU B) is in FPT.

(2) If A'is not Horn, CSP<(.A U B) is pNP-hard. Moreover,
there exists an integer ¢ = ¢(A) such that CSP<(AUB) is
polynomial-time solvable whenever #. ¢ (AU B) <y, and is
NP-hard otherwise.

The proof of based on the universal-algebraic approach
combined with a recent complexity classification of MinCSP for
equality constraints.



Corollary. Let A be an equality language. Then
Redundant(.A), Impl(.A), and Equiv(.A) are either

polynomial-time solvable or NP-hard.



Future Work

«O>» «F>» «E» «E>» = QR



Refined classification for finite domains (that covers

Redundant(.A), Impl(.A), and Equiv(A)).

Classification for other infinite-domain CSPs.

Improved algebraic toolbox for alien constraints.

Are there A and B such that CSP< is in XP but not in FPT?

The alien constraints framework is one way of expanding the
concept of "tractable CSP". Other ways?



