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Basic assumption:

(1) CSP(A) is polynomial-time solvable
(2) CSP(A ∪ B) is NP-hard

Basic question: What is the largest k such that CSP≤k(A ∪ B)
is polynomial-time solvable?
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Motivation I

The polynomial-time solvable fragments of CSP(A) are known
in many cases.
• Finite domains
• Allen’s algebra
• Equality languages
• Temporal relations
• ...

Quite difficult to work with!

Adding a small number of relations outside A can be really
helpful −→ CSP≤k(A ∪ B)

We illustrate this idea with model checking, but there are many
other examples. Global constraints (e.g. the all-diff constraint)
is one of them.



Motivation I

The polynomial-time solvable fragments of CSP(A) are known
in many cases.
• Finite domains
• Allen’s algebra
• Equality languages
• Temporal relations
• ...

Quite difficult to work with!

Adding a small number of relations outside A can be really
helpful −→ CSP≤k(A ∪ B)

We illustrate this idea with model checking, but there are many
other examples. Global constraints (e.g. the all-diff constraint)
is one of them.



Motivation I

Typically, there are two possibilities.

(1) CSP≤k(A∪B) is polynomial-time solvable for every fixed k ,
or

(2) there exists a fixed k such that CSP≤k(A ∪ B) is NP-hard.

Case (2) is almost always bad.

Case (1) is better, and sometimes much better.
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Case (1a) f (k) · poly(||I ||)

Case (1b) ||I ||f (k)

Parameterized complexity.

Case (1a) CSP≤k(A ∪ B) is fixed-parameter tractable (FPT)
with parameter k .

Case (1b) CSP≤k(A ∪ B) is in XP.

Case (2) CSP≤k(A ∪ B) is pNP-hard.
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Motivation II

Redundant(A)
"Can one remove constraint c without changing the
set of solutions?"

Impl(A)
"Is the set of solutions to I1 a subset of the solutions to I2?"

Equiv(A)
"Do I1 and I2 have the same set of solutions?"

Many applications are described in the literature.

Complexity classifications are known in special cases (e.g.
Boolean domains).
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These three problems are polynomial-time interreducible.

We show that the complexity of them can be described in terms
of CSP≤1(A ∪ B) for suitably chosen B.
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Motivation III

"Horn-like" disjunctive constraints have many applications.

(x ∨ ¬y ∨ ¬z) ∧ (y ∨ ¬w) ∧ (z)

The computational complexity of such constraints is known.

CSP(A ∨ B∗) is in P

if and only if

(1) A and B satisfy an algebraic condition (1-independence) and

(2) CSP≤1(A ∪ B) is in P.
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Finite-domain CSPs



Theorem. Let A,B be constraint languages over a finite
domain A. Then, CSP≤(A ∪ B) is either in FPT or pNP-hard.

The proof is based on ideas from the universal-algebraic
approach to CSPs.

Warning: This does not imply that CSP≤1(A ∪ B) is NP-hard
whenever CSP≤(A ∪ B) is pNP-hard.

Thus, we cannot say much about problems such as
Redundant(A), Impl(A), and Equiv(A).
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Theorem. Let A,B be constraint languages over the
two-element domain {0, 1}. Assume CSP(A) is polynomial-time
solvable and CSP(A ∪ B) is NP-hard. Then the following hold.

(1) If A is Schaefer, then CSP≤(A ∪ B) is in FPT.

(2) If (i) A is not Schaefer, (ii) A is both 0- and 1-valid, (iii) B
contains a 0/1-pair, and (iv) B is 0- or 1-valid, then
CSP≤2(A ∪ B) is NP-hard and CSP≤1(A ∪ B) is
polynomial-time solvable.

(3) Otherwise, CSP≤2(A ∪ B) is NP-hard.

The proof is based on a Schaefer-like analysis of the relations
(not so much algebra).
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Corollary. Let A be a language over a two-element domain.
Then Redundant(A), Impl(A), and Equiv(A) are either
polynomial-time solvable or NP-hard.



Equality Languages



A constraint language A is an equality language if the relations
in A are first-order definable in (N; =). N.B. Infinite domain!

R(x , y , z) ≡ (x = y) ∨ (x = z)

S(x , y , z) ≡ (x = y ∨ x ̸= z) ∧ (y = z ∨ x ̸= y)

The complexity of CSP(A) is known for all equality languages
A.

The complexity of equality languages is a necessary ingredient
in all classifications of more expressive classes.

Thus, natural to study CSP≤k(A ∪ B) for equality languages
A,B.
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Theorem. Let A,B be equality languages such that CSP(A) is
polynomial-time solvable and CSP(A ∪ B) is NP-hard.

(1) If A is Horn, CSP≤(A ∪ B) is in FPT.

(2) If A is not Horn, CSP≤(A ∪ B) is pNP-hard. Moreover,
there exists an integer c = c(A) such that CSP≤(A ∪ B) is
polynomial-time solvable whenever ̸=c /∈ ⟨A ∪ B⟩≤k , and is
NP-hard otherwise.

The proof of based on the universal-algebraic approach
combined with a recent complexity classification of MinCSP for
equality constraints.
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Future Work



Refined classification for finite domains (that covers
Redundant(A), Impl(A), and Equiv(A)).

Classification for other infinite-domain CSPs.

Improved algebraic toolbox for alien constraints.

Are there A and B such that CSP≤ is in XP but not in FPT?

The alien constraints framework is one way of expanding the
concept of "tractable CSP". Other ways?


