Computing small Rainbow Cycle Numbers with **SAT modulo Symmetries**

Markus Kirchweger

TU Wien, Vienna, Austria

Stefan Szeider

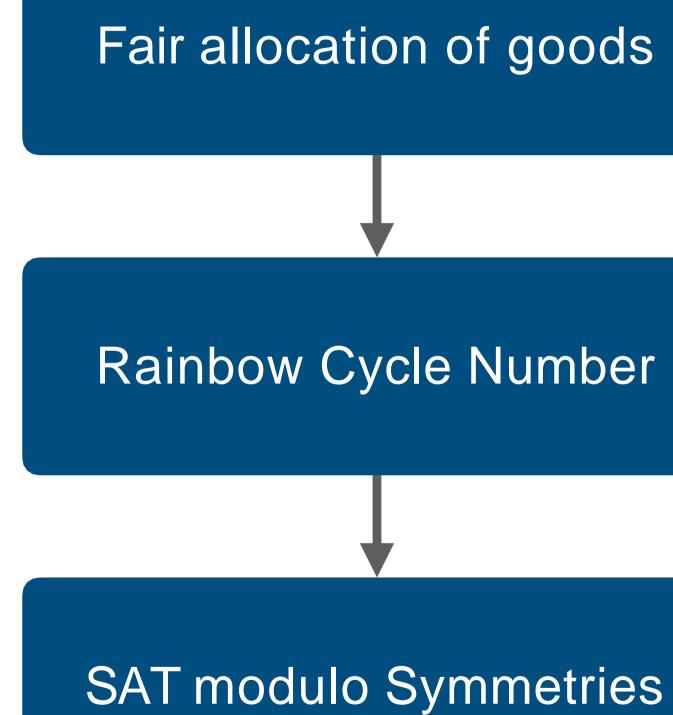
TU Wien, Vienna, Austria

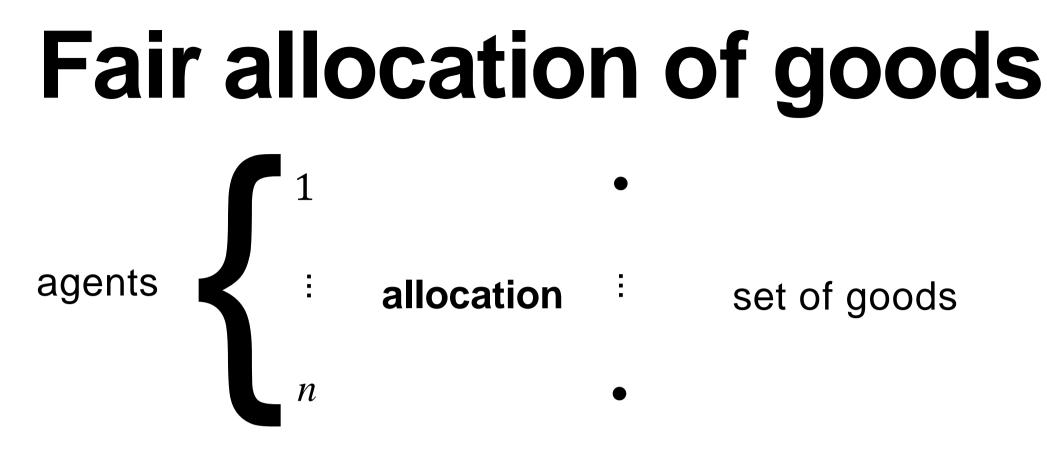
Der Wissenschaftsfonds.

TF

VIENNA SCIENCE AND TECHNOLOGY FUND

Outline

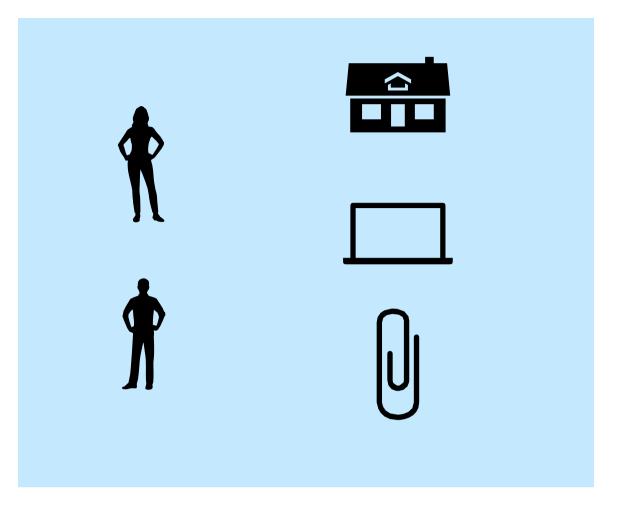




• allocate to each agent a set of goods $A_i \subseteq M$ such that

$$A_i \cap A_j = \emptyset \quad and \quad \cup_i A_i = M$$

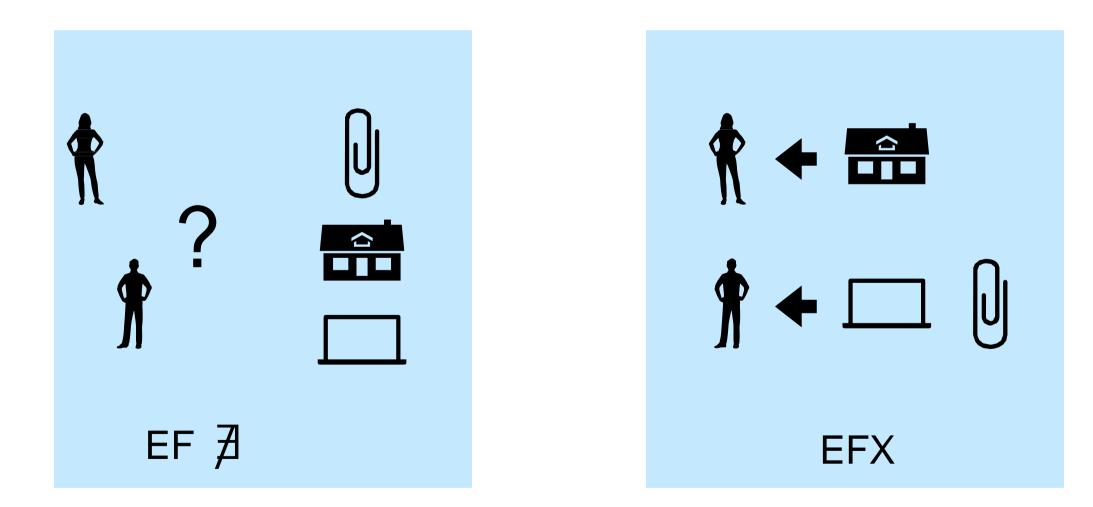
- a **partial** allocation allows some goods unassigned (or donated to *charity*)
- valuation: $v_i: 2^M \to \mathbb{R}_{\geq 0}$

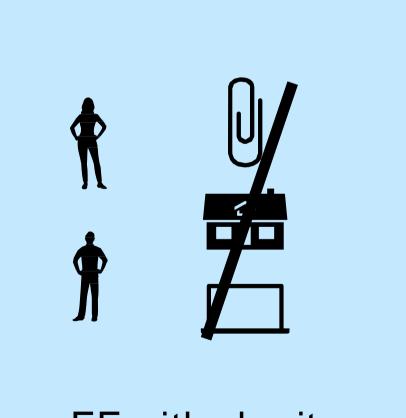


		J	Ŕ	†
			0	0
		\checkmark	1	1
	\checkmark		1000	900
	\checkmark	\checkmark	1001	901
\checkmark			1000000	1100000
\checkmark		\checkmark	1000001	1100001
\checkmark	\checkmark		1001000	1100900
\checkmark	\checkmark	\checkmark	1001001	1100901

Envy-freeness

- EF ... envy-free if $\forall i,j : v_i(A_i) \ge v_i(A_j)$
- EFX ... envy-free up to any good: $\forall i, j, \forall g \in A_i : v_i(A_i) \ge v_i(A_i \setminus \{g\})$





EF with charity

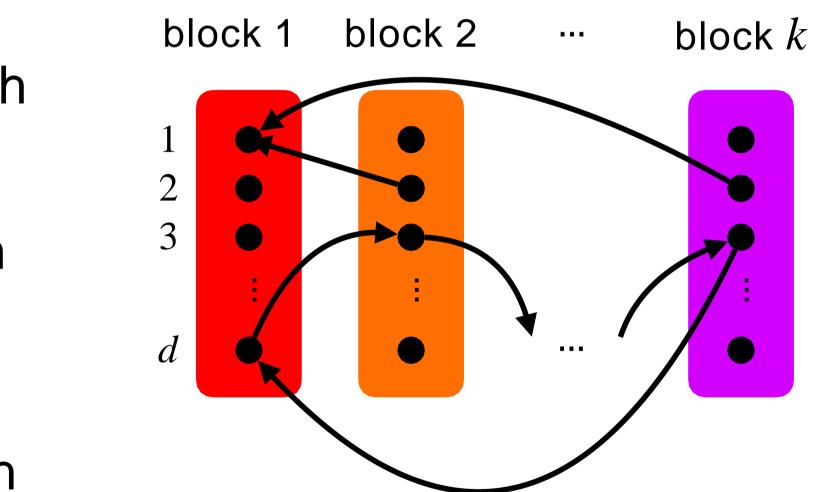
Does an EFX allocation always exist?

- one of the most significant open questions in the field
- Partial affirmative results include the cases
 - 2 agents [Plaut, Roughgarden 2018]
 - 3 agents, additive valuations [Chaudhury, Garg, Mehlhorn 2020]
- Approximative EFX:

 $\alpha \text{-EFX for } \alpha \in (0,1]: \forall i,j, \forall g \in A_i : v_i(A_i) \ge \frac{\alpha}{\alpha} \cdot v_i(A_i \setminus \{g\})$

The Rainbow Cycle Number

- The rainbow cycle number R(d) is the largest integer k such that there exists a k-partite directed graph with each block of size d such that:
 - every vertex has an incoming edge from each other block (in-property)
 - there is **no rainbow cycle** (a cycle containing at most one vertex from each block)



α-EFX and the Rainbow Cycle Number

- Based on R(d) one gets (1ε) -EFX allocations with a sublinear number of unallocated items.
- Theorem [Chaudhury, Garg, Mehlhorn, Mehta, Misra 2021]

Let $\mathcal{E} \in (0,1/2]$ and let g(y) be the smallest integer d such that $d \cdot R(d) \geq y$. Then, there is a partial $(1 - \varepsilon)$ -EFX allocation with at most

$$\frac{4n}{\varepsilon \cdot g(2n/\varepsilon)}$$

many unallocated items.

Bounds on the Rainbow Cycle Number

[Chaudhury, Garg, Mehlhorn, Mehta, Misra 2021]

•
$$d \leq R(d) \leq d^4 + d$$

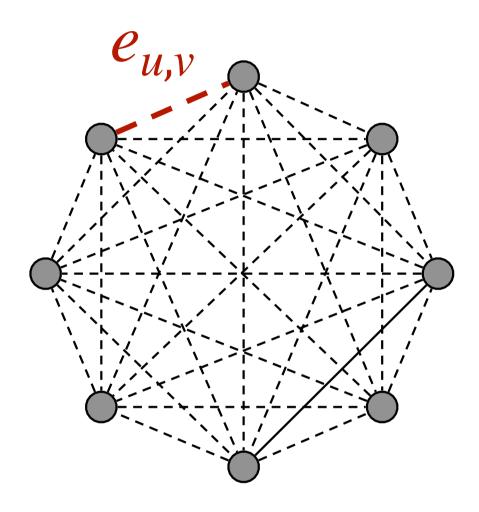
- "We believe that finding better upper bounds on R(d) is a natural combinatorial question"
- "Better upper-bounds to R(d) imply the existence of better relaxations of EFX allocations"
- "Therefore investigating better upper bounds on the rainbow cycle number is of interest in its own right and we leave this as an interesting open problem"
- R(2) = 2
- R(3) = 3
- $R(4) \stackrel{?}{=} 4$ open

Conjecture: R(d) = d

Showing R(d) = d for small d

- checking that every (d + 1)-partite graph with d vertices per block that satisfies the in-property contains a rainbow cycle.
- enumerate all such graphs modulo isomorphism, say with Nauty?
- d = 4 implies n = 20
- there are more than 7.03×10^{29} directed graphs with 14 vertices, modulo isomorphism
- generate-and-test not feasible!

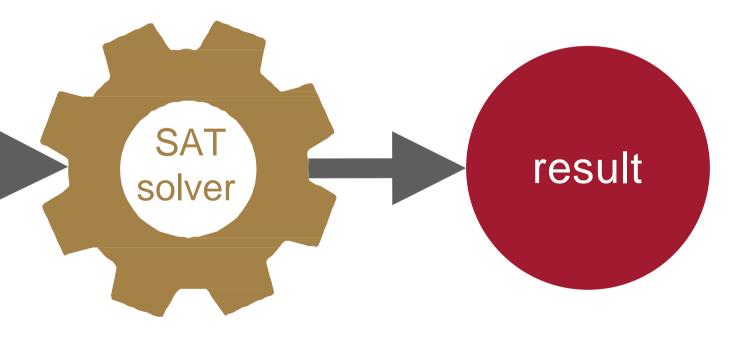
Graph search as a synthesis problem



- We fix the number of vertices
- variable $e_{u,v}$ which is true iff the edge exists

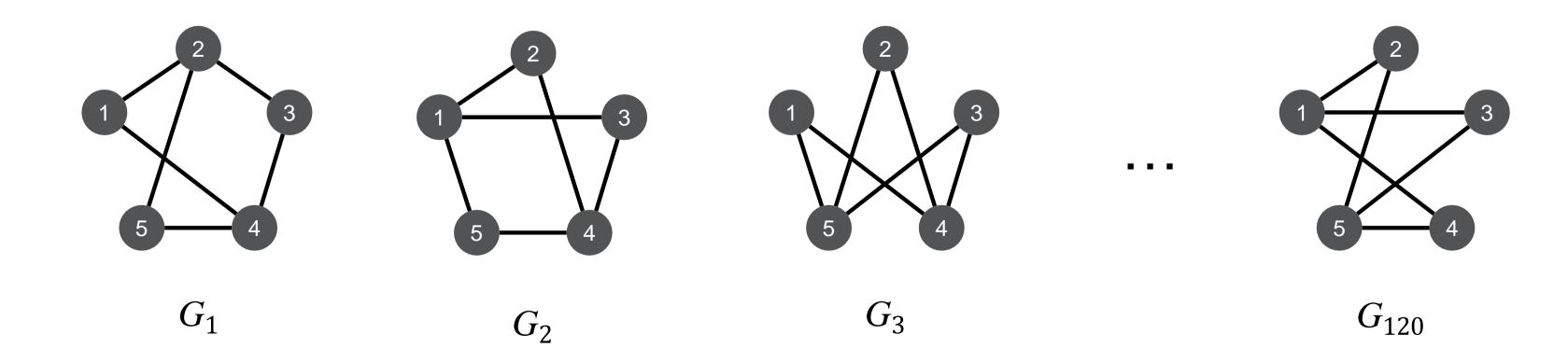
property (encoding)

• Each edge $\{u, v\}$ is represented by a propositional



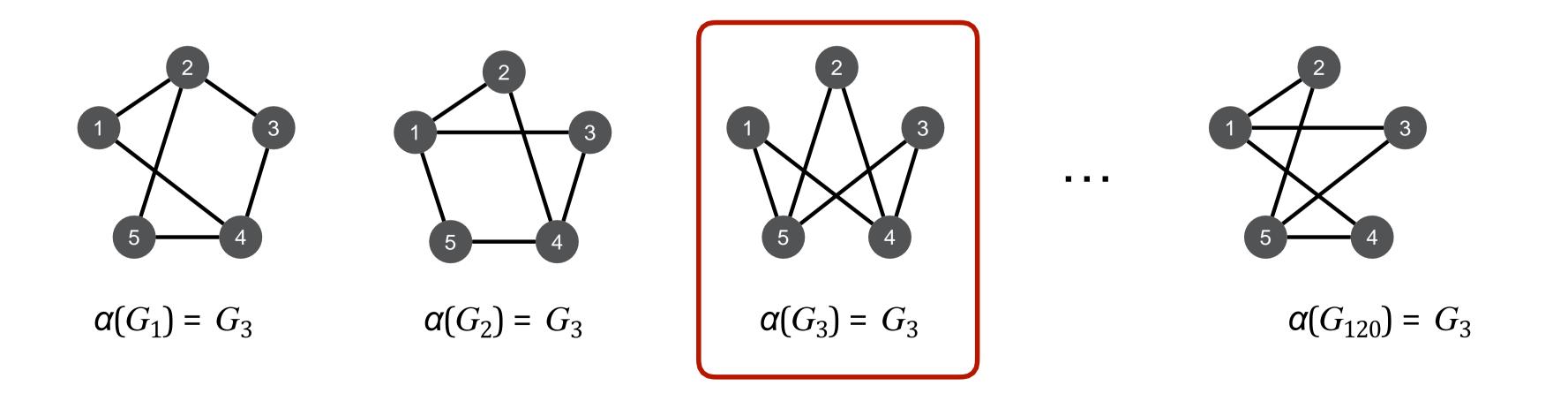
Isomorph-Free Generation

- Isomorph-free generation: Number of objects explode quickly
- Canonization: map each object to a unique representative $\alpha(G)$ of its isomorphism class

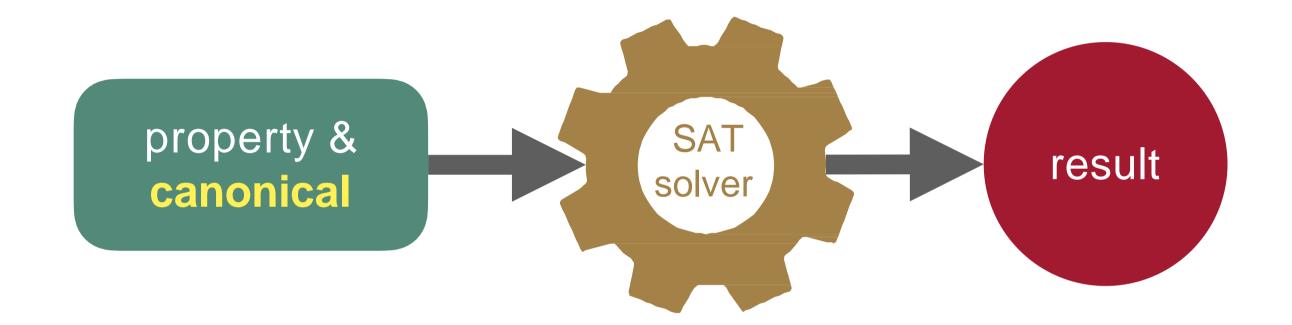


Isomorph-Free Generation

- Isomorph-free generation: Number of objects explode quickly
- Canonization: map each object to a unique representative α(G) of its isomorphism class
- Canonical Objects: Only generate objects with $\alpha(G) = G$

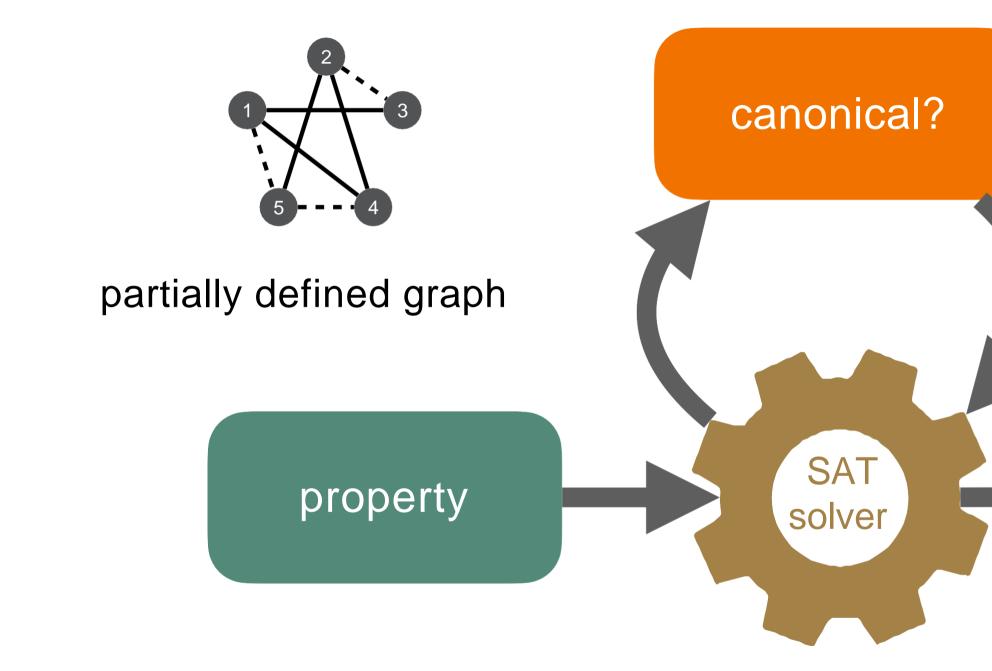


Static SAT approach



Problem: no polynomial size encoding for canonicity is known!

Dynamic SAT approach: SMS

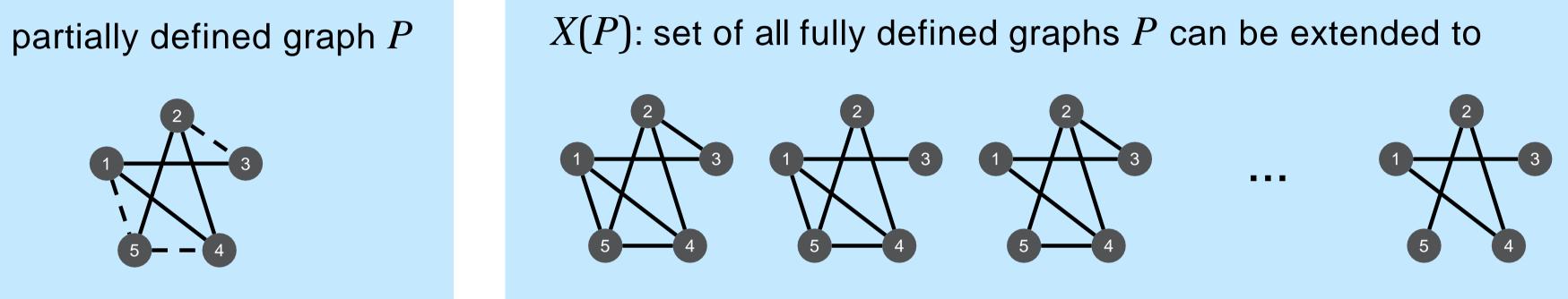


- SAT modulo Symmetries [Kirchweger, Szeider. CP 2021]
- IPASIR-UP interface [Fazekas et al. 2023]

learn a clause if is not canonical (*)

result

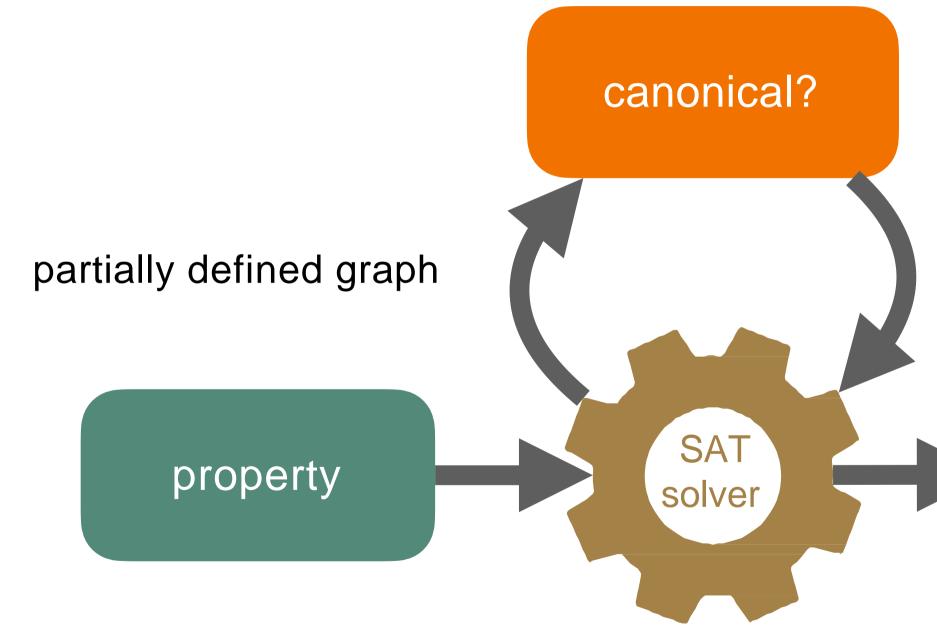
Canonicity of partially defined graphs



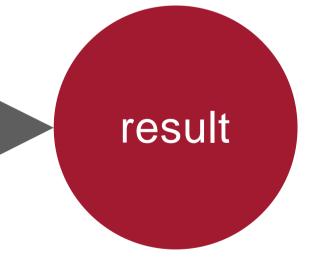
- $\forall G \in X(P) \exists \pi : \pi(G)$ is **non-canonical** if
- is certified non-canonical if $\exists \pi \forall G \in X(P) : \pi(G) <_{\mathsf{lex}} G$ we have an efficient constraint-propagation algorithm for computing π

$$() <_{\mathsf{lex}} G$$

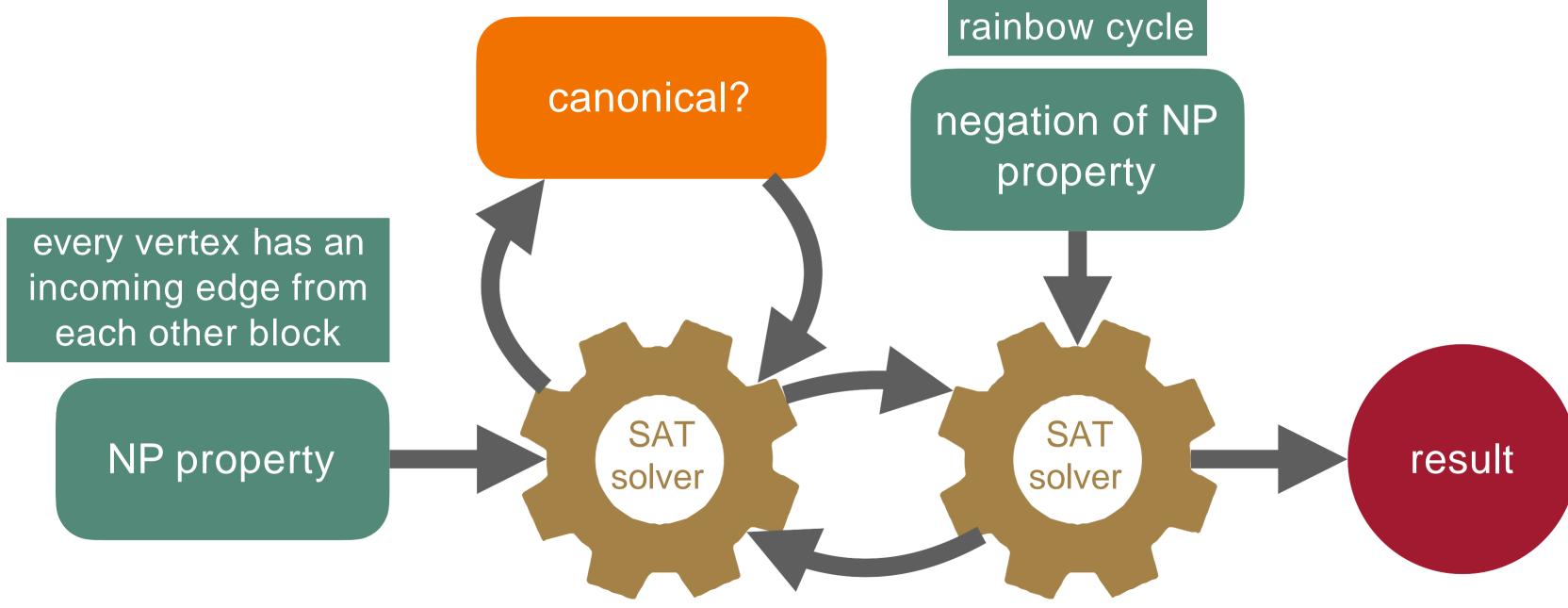
Dynamic SAT approach: SMS



- learn a clause if is not certified canonical
- store certificate



SMS with co-certificate learning



learn clause that blocks the co-certificate

• [Kirchweger, Peitl, Szeider 2023]

there is a

Results for showing R(d) = d

- " $R(3) \ge 4$ " is unsatisfiable, within 1 second
- " $R(4) \ge 5$ " is unsatisfiable, within 23 minutes
- " $R(5) \ge 6$ " didn't terminate within 300h

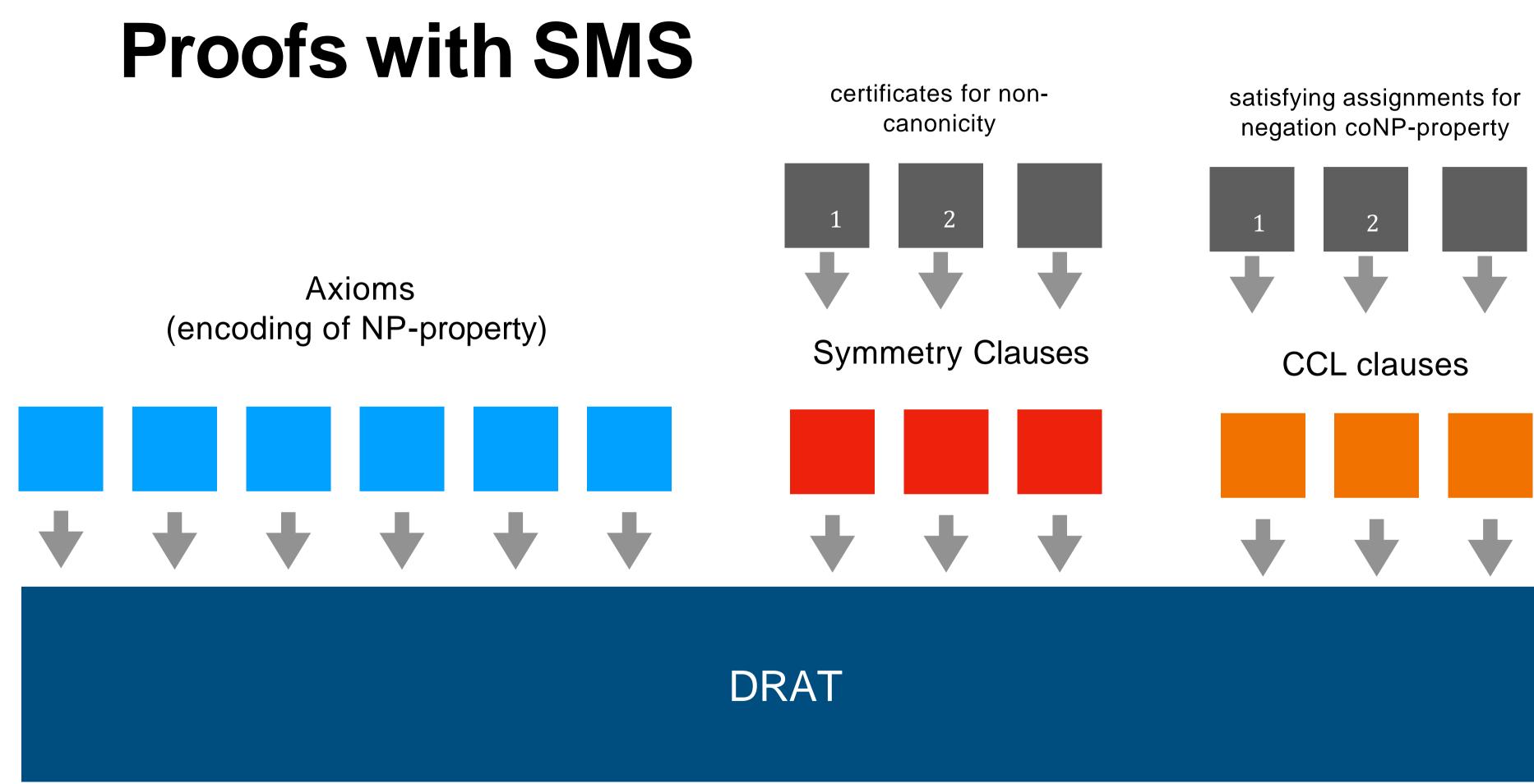
Invariant pruning

- assuming max indegree is $\Delta := d(k-1)$
- w.l.o.g., vertex 1 has indegree Δ
- if UNSAT, add constraints that limit indegrees to $\Delta 1$ for all vertices
- assuming max indegree is $\Delta 1$
- w.l.o.g., vertex 1 has indegree $\Delta 1$
- if UNSAT, add constraints that limit indegrees to $\Delta 2$

etc.

R(d) with invariant pruning

- " $R(4) \ge 5$ "
 - showing in-degree ≤ 4 within 3 seconds
 - showing unsatisfiability with in-degree ≤ 4 then takes half a minute
 - almost 50-fold speedup
- " $R(5) \ge 6$ "
 - showing in-degree ≤ 6 within 105h
 - showing unsatisfiability with in-degree ≤ 6 didn't terminate within 300h



[Wetzler, Heule, Hunt 2014]

Summary

- Fair division of goods, EFX
- Connection between rainbow cycle numbers and α -EFX with charity
- Computing rainbow cycle numbers with SAT modulo Symmetries
- Determined R(4) = 4, with DRAT proof

Future Work:

- Settle case R(5) = 5 (mathematical insights?)
- Apply invariant pruning to other highly symmetric problems
- Try to compute counterexample to EFX

Resources

Tool <u>https://github.com/markirch/sat-modulo-symmetries/</u>

Documentation <u>https://sat-modulo-symmetries.readthedocs.io/</u>

