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Fair allocation of goods

• allocate to each agent a set of goods 𝐴𝑖 ⊆ 𝑀
such that

• a partial allocation allows some goods unassigned (or 
donated to charity)

i
• valuation: v : 2M → ℝ≥0

agents

1

n

⋮

∙

⋮ set of goodsallocation

∙

0 0

✓ 1 1

✓ 1000 900

✓ ✓ 1001 901

✓ 1000000 1100000

✓ ✓ 1000001 1100001

✓ ✓ 1001000 1100900

✓ ✓ ✓ 1001001 1100901

𝐴𝑖 ∩ 𝐴𝑗 = ∅ 𝑎𝑛𝑑 ∪𝑖𝐴𝑖 = 𝑀



Envy-freeness

• EF … envy-free if ∀i, j : vi(Ai) ≥ vi(Aj)

• EFX … envy-free up to any good: ∀i, j, ∀g ∈ Aj : vi(Ai) ≥ vi(Aj∖{g})

?

EF ∃/ EFX EF with charity



Does an EFX allocation always exist?

• one of the most significant open questions in the field

• Partial affirmative results include the cases

• 2 agents [Plaut, Roughgarden 2018]

• 3 agents, additive valuations [Chaudhury, Garg, Mehlhorn 2020]

• Approximative EFX:

α-EFX for α ∈ (0,1]: ∀i, j, ∀g ∈ Aj : vi(Ai) ≥α ⋅ vi(Aj∖{g})



The Rainbow Cycle Number

• The rainbow cycle number R(d) is the largest 

integer k such that there exists a k-partite

directed graph with each block of size d such

that:

• every vertex has an incoming edge from 
each other block (in-property)

• there is no rainbow cycle (a cycle 
containing at most one vertex from each 
block)

⋮ ⋮ ⋮

…block 1 block 2 block k
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α-EFX and the Rainbow Cycle Number

• Based on R(d) one gets (1 − ε)-EFX allocations with a sublinear number of 
unallocated items.

• Theorem [Chaudhury, Garg, Mehlhorn, Mehta, Misra 2021]

Let ε ∈ (0,1/2] and let g(y) be the smallest integer d such that d ⋅ R(d) ≥ y.

Then, there is a partial (1 − ε)-EFX allocation with at most

4n
ε ⋅ g(2n/ε)

many unallocated items.



Bounds on the Rainbow Cycle Number
• [Chaudhury, Garg, Mehlhorn, Mehta, Misra 2021]

• d ≤ R(d) ≤ d4 +  d

• “We believe that finding better upper bounds on R(d) is a natural combinatorial 
question”

• “Better upper-bounds to R(d) imply the existence of better relaxations of EFX 
allocations”

• “Therefore investigating better upper bounds on the rainbow cycle number is of interest 
in its own right and we leave this as an interesting open problem”

• R(2) =  2

• R(3) =  3

• R(4) =? 4 open

Conjecture: 𝑅 𝑑 = 𝑑



Showing R(d) =  d for small d

• checking that every (𝑑 + 1)-partite graph with 𝑑 vertices per block that satisfies
the in-property contains a rainbow cycle.

• enumerate all such graphs modulo isomorphism, say with Nauty?

• 𝑑 = 4 implies 𝑛 = 20

• there are more than 7.03×1029 directed graphs with 14 vertices, modulo 

isomorphism

• generate-and-test not feasible!



Graph search as a synthesis problem

• We fix the number of vertices

• Each edge {u, v} is represented by a propositional 

variable eu,v which is true iff the edge exists

eu,v

SAT

solver result
property
(encoding)



Isomorph-Free Generation

• Isomorph-free generation: Number of objects explode quickly

• Canonization: map each object to a unique representative α(G) 
of its isomorphism class
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Isomorph-Free Generation

• Isomorph-free generation: Number of objects explode quickly

• Canonization: map each object to a unique representative α(G) 
of its isomorphism class

• Canonical Objects: Only generate objects with α(G) = G
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Static SAT approach

Problem: no polynomial size encoding for canonicity is known!

SAT

solver result
property &

canonical



Dynamic SAT approach: SMS

• SAT modulo Symmetries [Kirchweger, Szeider. CP 2021]

• IPASIR-UP interface [Fazekas et al. 2023]

SAT

solver resultproperty

canonical?

learn a clause if

is not canonical (*)partially defined graph
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Canonicity of partially defined graphs

• is non-canonical if ∀G ∈ X(P) ∃π : π(G) <lex G

• is certified non-canonical if ∃π ∀G ∈ X(P) : π(G) <lex G

we have an efficient constraint-propagation algorithm for computing π 
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X(P): set of all fully defined graphs P can be extended to

⋮



Dynamic SAT approach: SMS

SAT

solver resultproperty

canonical?

partially defined graph

• learn a clause if is not 

certified canonical

• store certificate



SMS with co-certificate learning

• [Kirchweger, Peitl, Szeider 2023]

SAT

solver resultNP property

canonical?

SAT

solver

negation of NP 

property

learn clause that blocks 

the co-certificate

every vertex has an 

incoming edge from 

each other block

there is a 

rainbow cycle



Results for showing R(d) =  d

• “R(3) ≥ 4” is unsatisfiable, within 1 second

• “R(4) ≥ 5” is unsatisfiable, within 23 minutes

• “R(5) ≥ 6” didn’t terminate within 300h



Invariant pruning

• assuming max indegree is Δ := d(k − 1)

• w.l.o.g., vertex 1 has indegree Δ

• if UNSAT, add constraints that limit indegrees to Δ − 1 for all vertices

• assuming max indegree is Δ − 1

• w.l.o.g., vertex 1 has indegree Δ − 1

• if UNSAT, add constraints that limit indegrees to Δ − 2

etc.



R(d) with invariant pruning

• “R(4) ≥ 5”

• showing in-degree≤ 4 within 3 seconds

• showing unsatisfiability with in-degree≤ 4 then takes half a minute

• almost 50-fold speedup

• “R(5) ≥ 6”

• showing in-degree≤ 6 within 105h

• showing unsatisfiability with in-degree≤ 6 didn’t terminate within 
300h



Proofs with SMS

DRAT

Axioms 

(encoding of NP-property)
Symmetry Clauses

1 2

certificates for non- 

canonicity

1 2

satisfying assignments for 

negation coNP-property

CCL clauses

[Wetzler, Heule, Hunt 2014]



Summary

• Fair division of goods, EFX

• Connection between rainbow cycle numbers and α-EFX with charity

• Computing rainbow cycle numbers with SAT modulo Symmetries

• Determined 𝑅 4 = 4, with DRAT proof

Future Work:

• Settle case 𝑅 5 = 5 (mathematical insights?)

• Apply invariant pruning to other highly symmetric problems

• Try to compute counterexample to EFX



Resources

Tool https://github.com/markirch/sat-modulo-symmetries/

Documentation https://sat-modulo-symmetries.readthedocs.io/
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