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Constraint Modelling: An Example

| am an actor with many offers.

Requirement 1: Only one movie per day. Decision Variables:

Requirement 2: Maximize income. moviesy, moviesy, ..., moviesg

Which movies to choose? Domain:
movies; € {0, 1}

Movie Title Start Day End Day Constraints:

0 Tarjan of the Jungle 4 13 moviesy + movies, < 1
1 The Four Volume Problem 17 27 moviesy + moviesz < 1
2 The President's Algorist 1 10 moviesy + moviess < 1
3 Steiner's Tree 12 18 [-..]

4 Process Terminated 23 30 ] .movies4 + moviesg < 1
5 Halting State 9 16 Objective: .

6 Programming Challenges 19 25 max(z movies;)

7 Discrete Mathematics 2 7 =

8 Calculated Bets 26 31

Source: http://www.hakank.org/minizinc/movie _scheduling.mzn
Source description: Steven S. Skiena's The Algorithm Design Manual
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Expert

from cpmpy import *

movies = [["Tarjan of the Jungle", 4, 13],
"The Four Volume Problem", 17, 271,
"The President's Algorist™, 1, 101,
"Steiner's Tree", 12, 18],

"Process Terminated", 23, 30],
"Halting State™, 9, 16],

"Programming Challenges™, 19, 25],
"Discrete Mathematics", 2, 7],
"Calculated Bets", 26, 31]]
num_movies = len(movies)
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selected_movies = boolvar(shape=num_movies)
model = Model()
for i in range(num_movies):
for j in range(num_movies):
if i !'= j and movies[i][2] > movies[j][1] and movies[j][2] » movies[i][1]:

model += ~(selected movies[i] & selected _movies[j])

model .maximize(sum(selected_movies))

model.solve()
print(selected_movies.value())
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CP is powerful, but modelling
requires expertise In:

& Domain Knowledge
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<xI=| Mathematical Skills

(%3 Solver Formalisms



Making CP More Accessible

Modelling Tools @ EE coww

Constraint Acquisition

Users provide or classify (non-)solutions

- From Natural Language
Textual descriptions of combinatorial problems
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Make a CP model
for me, please!

Can

Large Language Models
assist in
Constraint Modelling?
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Image created by OpenAl's ChatGPT.



Methodology
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Background: Large Language Models

LLM(Prompt) = Response

In: Dog

In-Context Learning (ICL): Out- Woof

An emergent ability of - In: Cat
Out: Meow
What examples? i Duck
Out: Quack
2. How many!? e
Out:

* Task Learning: 3

Lm{cle(o) z@

In what order?
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How to choose C?

7

{(q; Ri)};

Baseline: Static/Random

Retrieval-Augmented |CL

Similarity Diversity Recency
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1. LLMs as solvers

Problem Description] @ >[

Solution

a

|
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CP Solver
M
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Problem Description] Solution
PNL J a

1. LLMs as solvers o il

R Yo _-Y_ .
: Tagged Entities : : Blueprint Model : CP Solver
: © LLMpy 2 | LLMep

Pg : g Ppy p cp M

®assssnssssnnnnnnnnnn? -—e— o o = = s

Solution generated with

Chain-of-Thought

A popular actor... Let’s think step by step...

E: LLM (C 69 Q) 1 VYRR rrees 18 Thus, the final solution is:

choose? {moviesy: 0, movies;: 0, ...}
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2. LLMs as modellers

Problem Description]

Pyp J
. |
NER: -
? LLJI; W *
Tagged Entities : Blueprint Model
s - >
PE LL hr; Vi I PBM
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Solution
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CP Solver
M
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2. LLMs as modellers o GEY

Tagged Entities : Blueprint Model : CP Solver
g T LIMpy 20 | LLMep
......... L e M

Q; (Problem Desc) R; (CP Model)

from cpmpy import *

Generation of CP models:

A popular actor... # Data

ies = [{"title": "Tarjan of the Jungle",
P _ LLM C Towes )
CP ( @ Q) 1 Which movies to #n(t:e;::lr.ai[:;; A EE—

choose?
# Solve
a = M(PCP) model.solve()

n {(q; Rj)}jn:l
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3. Blueprint Model

Solution

a

Problem Description] LLM,,
Pyp J
T T e, T 77T TC Iy~ 77 |
G =

: 1
I Y..nnr, - Y \ 4
- Tagged Entities : Blueprint Model | Formal CP Model
: Pg : LLMpy > Ppm Pcp
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CP Solver
M
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Problem Description] LLM,, Solution

a

3. Blueprint Model

Formal CP Model CP Solver
Pop M

j | Q; (Problem Desc) R; (Blueprint Model)
Decompose MOdeI l : # Decision Variables

Define binary variables to represent whether the movie is selected (1) or not

G e n e rati O n : (0). The variable 'selected_movies' is an array of size equal to the number of

movies (9 in this case).

# Domains:
A POPUlar actor... Each var.lablle in 'selected_movies' has a domain .of.[O, 1] where 1 represents
the movie is selected and O represents the movie is not selected.

Pgy = LLM (C D Q) 1 4 Constraints:

WhICh mOVieS to Non-overlapping: Ensure that the intervals of selected movies do not overlap.
) This can be represented by iterating over the movies and for each pair of
Choose. selected movies (j, j), add a constraint that the intervals of the movies do not

overlap.

# Objective:
Maximize the number of selected movies, which is equivalent to maximizing
the sum of the 'selected_movies' array.

{(q; Ri)}]-n=1
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[pmblem Descripﬁon} >[ Sotton J
3. Blueprint Model ]

j Q; (Problem Desc & R; (CP Model)
Decompose Mode it

Generation: T
# Data
A popular actor... : S
) ) movies = [{"title": "Tarjan of the
PBM — LLM(C @ Q) 1 Which movies to choose? Jungle”, "interval™; [4, 131}, ...]
# Constraints o0
<Blueprint Model>

PCP=LLM(C€BQ@PBM)

(R,




4. Named Entity Recognition

Problem Description

‘.------------------n‘ [ I

Solution

a
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4. Named Entity [} ‘I
Recognition =

Q; (Problem Desc) R; (CP Model)

A popular actor...

from cpmpy import *
Which movies to choose?

# Data
) movies = [{"title": "Tarjan of the Jungle", "interval": [4, 13]}, ...]
1 CONST (36-41): only one 4 Constraints
OBJ_DIR (44-49): maximize ____eee

# Solve
model.solve() </>

<Blueprint Model>

{(Q; Rj)}jnzl
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Evaluation Metrics

# Decision Variables

selected movies = boolvar(shapeznum movies) # 1 if the movie is selected, @ otherwise

# CP Model
° model = Model()
Declaration Accuracy
# Non-overlapping movie schedules

* for i in range(num_movies):
- for j in range(num movies):
# Check if the intervals overlap for each pair of movies

- if 1 !'= j and movies[i][2] » movies[j][1] and movies[j]1[2] > movies[i][1]:

1 1 —~ — Iz =

model += ~(selected movies[i] & selected movies[j])
Model Accuracy
—_— — —— clected movies
model .maximize(sum(selected movies))
Solution Accuracy

H#Errors: CP Model could not be run

model . solve()

e False False False False True
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Experiments: Datasets

—

* NL4Opt': Linear Optimisation Problems

* LGPs?: Logic Grid Puzzles - Homogeneous

* Mixed: 18 diverse problems drawn from a

CP Modelling course. New

! Rindranirina Ramamonijison, Timothy Yu, Raymond Li, Haley Li, Giuseppe Carenini, Bissan Ghaddar, Shigi He, Mahdi Mostajabdaveh, Amin
Banitalebi-Dehkordi, Zirui Zhou, et al. Nl[4opt competition: Formulating optimization problems based on their natural language descriptions.

2 Arindam Mitra and Chitta Baral. Learning to automatically solve logic grid puzzles.
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LLMs as CP solvers? No.
LLMs as CP modellers? Promising.

CoT Solving
NL4Opt

CP Modelling

CoT Solving
LGPs

CP Modelling

CoT Solving
Mixed

CP Modelling

Static 4-shot ICL, with gpt-3.5-turbo-0125

11.46
81.31
9.36
57.00
16.67
50.00
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Configuration: gpt-3.5-turbo-0125, 4-shot static ICL

Intermediate D ot e sok ) Do (0 L ot

. 81.31 87.81 79.24
Re P resSe ntat| ons NL4Opt +BM 8 84.43 89.93 82.01

+ NER 8 85.47 88.60 80.62

CP 11 57.00 80.45 55.00

L GPs + BM 18 58.00 70.69 58.00

|‘ Linear Opt. Problems +NER 20 54.00 67.77 50.00

BM: Larger Context 33.33% 16.67%
4 50.00% 50.00%

8 50.00% 44.44%
12 55.56% 50.00%

Configuration: gpt-3.5-turbo-0125, static ICL, Solution Accuracy.

o' For more complext problems: - [N ET Ty I NETTIN

® NER: Variable Misclassification Mixed

31



Problem Description] XLMM

CP Model

Pcp

Solution

a

]

CP Solver
M
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Retrieval-Augmented ICL? Yes.

Retrieval LGPs LGPs NL4Opt | NL4Opt
Sol. (%) | Decl. (%) | Sol. (%) | Decl. (%)

R I Static 57.00 80.45 81.31 87.81
\/ ci€vance Random 66.00 76.75 77.16 85.60
v Dive I"Sit)’ Similarity 6800 8534 85.12 87.72

R-Similarity 72.00 89.83 83.39 88.16
\/ Recenc)/ Diversity 66.00 83.09 84.08 87.99

R-Diversity 74.00 87.98 83.74 87.10

Random w/ Last-Similar 76.00 89.96 83.74 88.34
CP modelling. Config: gpt-3.5-turbo-0125, R-MMR A = 0.5.
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The more examples the better?
Not exactly.

851

Model Accuracy (%)
U [e)] [)] ~l ~l [0 0]

w
o

Config: gpt-3.5-turbo-0125, R-MMR (A = 0.5)

[00]
w

T

o
e

~
(9]

(o)}
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Solution Accuracy (%)
~
o

KTW

, NL4Opt BM+CP
—=— LGPs CP

] —— LGPs BM+CP

—s— NL4Opt CP
’ NL4Opt BM+CP 60
| —— LGPs CP
—— LGPs BM+CP 55
2 4 8 12 16 2 4 8 12 16
Number of Shots Number of Shots

Adding in-context examples improves
up to a threshold.
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What about diverse problems?

Mixed Dataset. Config: gpt-3.5-turbo-0125, R-SIM, 12-shot ICL.

(o8]
o

Emm CP
s BM + CP

~
o O

* Few examples to retrieve from.

o

* More complex problems.

o

Correct Solutions (%)
N w SN (021 (@)}
C? o

=
o O

Evaluation Challenge:

- Ex. Session 1 Ex. Session 2 Ex. Session 3 Ex. Session 4
Exercise Sessions

'..‘ Choice of Decision Variables is free => Model-Aeeuraey.

[
) ’

Prompt LLMs to generate code that prints the

“T" solution in specific format => Solution Accuracy.
35




Summary

1. An LLM-based NL2CP
framework

2. Intermediate Problem
Representation

3. Evaluation of RAG strategies

4. Model Comparison Metrics
5. Initiated & Augmented Datasets
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Key Conclusions

o— o— ({01 tgie

LLMs as CP solvers? No
LLMs as CP modellers! Promising

Retrieval-Augmented In-Context
Learning boosts performance

Modelling more complex problems
remains challenging

Missing Evaluation Datasets:
From natural language to CP models
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Future Work

Main:
* High-Quality NL-CP Evaluation Dataset.

* Integrate coding techniques.
* Interactive modelling system.

Other:

* Beyond ICL: Supervised Fine-Tuning
* Large external data.
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Demo

https://chatopt.cs.kuleuven.be

Credits: Thomas Sergeys
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https://chatopt.cs.kuleuven.be
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