Constraint Modelling with LLMs
Using In-Context Learning

Kostis Michailidis, Dimos Tsouros, Tias Guns

@)
(S

Constraint Modelling: An Example

| am an actor with many offers.

Requirement 1: Only one movie per day. Decision Variables:

Requirement 2: Maximize income. moviesy, moviesy, ..., moviesg

Which movies to choose? Domain:
movies; € {0, 1}

Movie Title Start Day End Day Constraints:

0 Tarjan of the Jungle 4 13 moviesy + movies, < 1
1 The Four Volume Problem 17 27 moviesy + moviesz < 1
2 The President's Algorist 1 10 moviesy + moviess < 1
3 Steiner's Tree 12 18 [-..]

4 Process Terminated 23 30] .movies4 + moviesg < 1
5 Halting State 9 16 Objective: .

6 Programming Challenges 19 25 max(z movies;)

7 Discrete Mathematics 2 7 =

8 Calculated Bets 26 31

Source: http://www.hakank.org/minizinc/movie _scheduling.mzn
Source description: Steven S. Skiena's The Algorithm Design Manual

http://www.hakank.org/minizinc/movie_scheduling.mzn

Constraint Modelling: An Example

| am an actor with many offers.

Requirement 1: Only one movie per day.

Requirement 2: Maximize income.

Which movies to choose!?

Movie Title Start Day End Day

0
1
2
3
4
5
6
7
8

Source: http://www.hakank.org/minizinc/movie _scheduling.mzn

Tarjan of the Jungle

The Four Volume Problem
The President's Algorist
Steiner's Tree

Process Terminated
Halting State
Programming Challenges

Discrete Mathematics
Calculated Bets

4
17
1
12
23
9
19
2
26

Source description: Steven S. Skiena's The Algorithm Design Manual

13
27
10
18
30
16
25
7

31

IIIIIIIIIIIIIIII">

O
)

Expert

from cpmpy import *

movies = [["Tarjan of the Jungle", 4, 13],
"The Four Volume Problem", 17, 271,
"The President's Algorist™, 1, 101,
"Steiner's Tree", 12, 18],

"Process Terminated", 23, 30],
"Halting State™, 9, 16],

"Programming Challenges™, 19, 25],
"Discrete Mathematics", 2, 7],
"Calculated Bets", 26, 31]]
num_movies = len(movies)

L e R L N K W K |

selected_movies = boolvar(shape=num_movies)
model = Model()
for i in range(num_movies):
for j in range(num_movies):
if i !'= j and movies[i][2] > movies[j][1] and movies[j][2] » movies[i][1]:

model += ~(selected movies[i] & selected _movies[j])

model .maximize(sum(selected_movies))

model.solve()
print(selected_movies.value())

http://www.hakank.org/minizinc/movie_scheduling.mzn

CP is powerful, but modelling
requires expertise In:

& Domain Knowledge

+]- . .
<xI=| Mathematical Skills

(%3 Solver Formalisms

Making CP More Accessible

Modelling Tools @ EE coww

Constraint Acquisition

Users provide or classify (non-)solutions

- From Natural Language
Textual descriptions of combinatorial problems

"

Make a CP model
for me, please!

Can

Large Language Models
assist in
Constraint Modelling?

e
S S S

Image created by OpenAl's ChatGPT.

Methodology

PNL a
] .~ -T-TT=========7 E Y
NER: L
? LLMp)y, *
Tagged Entities : Blueprint Model : CP Solver
: Pg F "LLMgpy _): Ppy :_ M

“sussnsnnsnsnnnnnnnnn? -—eem e Em o o s

Background: Large Language Models

LLM(Prompt) = Response

In: Dog

In-Context Learning (ICL): Out- Woof

An emergent ability of - In: Cat
Out: Meow
What examples? i Duck
Out: Quack
2. How many!? e
Out:

* Task Learning: 3

Lm{cle(o) z@

In what order?

13

How to choose C?

7

{(q; Ri)};

Baseline: Static/Random

Retrieval-Augmented |CL

Similarity Diversity Recency

-9 0 O

° @9 @ ©

14

1. LLMs as solvers

Problem Description] @ >[

Solution

a

|

“ausnnunnnnnnnnnnwnnnt [I

CP Solver
M

16

Problem Description] Solution
PNL J a

1. LLMs as solvers o il

R Yo _-Y_ .
: Tagged Entities : : Blueprint Model : CP Solver
: © LLMpy 2 | LLMep

Pg : g Ppy p cp M

®assssnssssnnnnnnnnnn? -—e— o o = = s

Solution generated with

Chain-of-Thought

A popular actor... Let’s think step by step...

E: LLM (C 69 Q) 1 VYRR rrees 18 Thus, the final solution is:

choose? {moviesy: 0, movies;: 0, ...}

17

2. LLMs as modellers

Problem Description]

Pyp J
. |
NER: -
? LLJI; W *
Tagged Entities : Blueprint Model
s - >
PE LL hr; Vi I PBM

“ausnnunnnnnnnnnnwnnnt [I

g

Solution

a

|

CP Solver
M

18

2. LLMs as modellers o GEY

Tagged Entities : Blueprint Model : CP Solver
g T LIMpy 20 | LLMep
......... L e M

Q; (Problem Desc) R; (CP Model)

from cpmpy import *

Generation of CP models:

A popular actor... # Data

ies = [{"title": "Tarjan of the Jungle",
P _ LLM C Towes)
CP (@ Q) 1 Which movies to #n(t:e;::lr.ai[:;; A EE—

choose?
Solve
a = M(PCP) model.solve()

n {(q; Rj)}jn:l

19

3. Blueprint Model

Solution

a

Problem Description] LLM,,
Pyp J
T T e, T 77T TC Iy~ 77 |
G =

: 1
I Y..nnr, - Y \ 4
- Tagged Entities : Blueprint Model | Formal CP Model
: Pg : LLMpy > Ppm Pcp

“ausnnunnnnnnnnnnwnnnt [I

|

CP Solver
M

20

Problem Description] LLM,, Solution

a

3. Blueprint Model

Formal CP Model CP Solver
Pop M

j | Q; (Problem Desc) R; (Blueprint Model)
Decompose MOdeI l : # Decision Variables

Define binary variables to represent whether the movie is selected (1) or not

G e n e rati O n : (0). The variable 'selected_movies' is an array of size equal to the number of

movies (9 in this case).

Domains:
A POPUlar actor... Each var.lablle in 'selected_movies' has a domain .of.[O, 1] where 1 represents
the movie is selected and O represents the movie is not selected.

Pgy = LLM (C D Q) 1 4 Constraints:

WhICh mOVieS to Non-overlapping: Ensure that the intervals of selected movies do not overlap.
) This can be represented by iterating over the movies and for each pair of
Choose. selected movies (j, j), add a constraint that the intervals of the movies do not

overlap.

Objective:
Maximize the number of selected movies, which is equivalent to maximizing
the sum of the 'selected_movies' array.

{(q; Ri)}]-n=1

21

[pmblem Descripﬁon} >[Sotton J
3. Blueprint Model]

j Q; (Problem Desc & R; (CP Model)
Decompose Mode it

Generation: T
Data
A popular actor... : S
)) movies = [{"title": "Tarjan of the
PBM — LLM(C @ Q) 1 Which movies to choose? Jungle”, "interval™; [4, 131}, ...]
Constraints o0
<Blueprint Model>

PCP=LLM(C€BQ@PBM)

(R,

4. Named Entity Recognition

Problem Description

‘.------------------n‘ [I

Solution

a

23

4. Named Entity [} ‘I
Recognition =

Q; (Problem Desc) R; (CP Model)

A popular actor...

from cpmpy import *
Which movies to choose?

Data
) movies = [{"title": "Tarjan of the Jungle", "interval": [4, 13]}, ...]
1 CONST (36-41): only one 4 Constraints
OBJ_DIR (44-49): maximize ____eee

Solve
model.solve() </>

<Blueprint Model>

{(Q; Rj)}jnzl

24

Evaluation Metrics

Decision Variables

selected movies = boolvar(shapeznum movies) # 1 if the movie is selected, @ otherwise

CP Model
° model = Model()
Declaration Accuracy
Non-overlapping movie schedules

* for i in range(num_movies):
- for j in range(num movies):
Check if the intervals overlap for each pair of movies

- if 1 !'= j and movies[i][2] » movies[j][1] and movies[j]1[2] > movies[i][1]:

1 1 —~ — Iz =

model += ~(selected movies[i] & selected movies[j])
Model Accuracy
—_— — —— clected movies
model .maximize(sum(selected movies))
Solution Accuracy

H#Errors: CP Model could not be run

model . solve()

e False False False False True

28

Experiments: Datasets

—

* NL4Opt': Linear Optimisation Problems

* LGPs?: Logic Grid Puzzles - Homogeneous

* Mixed: 18 diverse problems drawn from a

CP Modelling course. New

! Rindranirina Ramamonijison, Timothy Yu, Raymond Li, Haley Li, Giuseppe Carenini, Bissan Ghaddar, Shigi He, Mahdi Mostajabdaveh, Amin
Banitalebi-Dehkordi, Zirui Zhou, et al. Nl[4opt competition: Formulating optimization problems based on their natural language descriptions.

2 Arindam Mitra and Chitta Baral. Learning to automatically solve logic grid puzzles.

29

LLMs as CP solvers? No.
LLMs as CP modellers? Promising.

CoT Solving
NL4Opt

CP Modelling

CoT Solving
LGPs

CP Modelling

CoT Solving
Mixed

CP Modelling

Static 4-shot ICL, with gpt-3.5-turbo-0125

11.46
81.31
9.36
57.00
16.67
50.00

30

Configuration: gpt-3.5-turbo-0125, 4-shot static ICL

Intermediate D ot e sok) Do (0 L ot

. 81.31 87.81 79.24
Re P resSe ntat| ons NL4Opt +BM 8 84.43 89.93 82.01

+ NER 8 85.47 88.60 80.62

CP 11 57.00 80.45 55.00

L GPs + BM 18 58.00 70.69 58.00

|‘ Linear Opt. Problems +NER 20 54.00 67.77 50.00

BM: Larger Context 33.33% 16.67%
4 50.00% 50.00%

8 50.00% 44.44%
12 55.56% 50.00%

Configuration: gpt-3.5-turbo-0125, static ICL, Solution Accuracy.

o' For more complext problems: - [N ET Ty I NETTIN

® NER: Variable Misclassification Mixed

31

Problem Description] XLMM

CP Model

Pcp

Solution

a

]

CP Solver
M

32

Retrieval-Augmented ICL? Yes.

Retrieval LGPs LGPs NL4Opt | NL4Opt
Sol. (%) | Decl. (%) | Sol. (%) | Decl. (%)

R I Static 57.00 80.45 81.31 87.81
\/ ci€vance Random 66.00 76.75 77.16 85.60
v Dive I"Sit)’ Similarity 6800 8534 85.12 87.72

R-Similarity 72.00 89.83 83.39 88.16
\/ Recenc)/ Diversity 66.00 83.09 84.08 87.99

R-Diversity 74.00 87.98 83.74 87.10

Random w/ Last-Similar 76.00 89.96 83.74 88.34
CP modelling. Config: gpt-3.5-turbo-0125, R-MMR A = 0.5.

33

The more examples the better?
Not exactly.

851

Model Accuracy (%)
U [e)] [)] ~l ~l [0 0]

w
o

Config: gpt-3.5-turbo-0125, R-MMR (A = 0.5)

[00]
w

T

o
e

~
(9]

(o)}
(9]

Solution Accuracy (%)
~
o

KTW

, NL4Opt BM+CP
—=— LGPs CP

] —— LGPs BM+CP

—s— NL4Opt CP
’ NL4Opt BM+CP 60
| —— LGPs CP
—— LGPs BM+CP 55
2 4 8 12 16 2 4 8 12 16
Number of Shots Number of Shots

Adding in-context examples improves
up to a threshold.

34

What about diverse problems?

Mixed Dataset. Config: gpt-3.5-turbo-0125, R-SIM, 12-shot ICL.

(o8]
o

Emm CP
s BM + CP

~
o O

* Few examples to retrieve from.

o

* More complex problems.

o

Correct Solutions (%)
N w SN (021 (@)}
C? o

=
o O

Evaluation Challenge:

- Ex. Session 1 Ex. Session 2 Ex. Session 3 Ex. Session 4
Exercise Sessions

'..‘ Choice of Decision Variables is free => Model-Aeeuraey.

[
) ’

Prompt LLMs to generate code that prints the

“T" solution in specific format => Solution Accuracy.
35

Summary

1. An LLM-based NL2CP
framework

2. Intermediate Problem
Representation

3. Evaluation of RAG strategies

4. Model Comparison Metrics
5. Initiated & Augmented Datasets

36

Key Conclusions

o— o— ({01 tgie

LLMs as CP solvers? No
LLMs as CP modellers! Promising

Retrieval-Augmented In-Context
Learning boosts performance

Modelling more complex problems
remains challenging

Missing Evaluation Datasets:
From natural language to CP models

37

Future Work

Main:
* High-Quality NL-CP Evaluation Dataset.

* Integrate coding techniques.
* Interactive modelling system.

Other:

* Beyond ICL: Supervised Fine-Tuning
* Large external data.

38

Demo

https://chatopt.cs.kuleuven.be

Credits: Thomas Sergeys

39

https://chatopt.cs.kuleuven.be/

=
O
P
N/
-
S
C
—

https://chatopt.cs.kuleuven.be

40

https://chatopt.cs.kuleuven.be/

	Slide 1: Constraint Modelling with LLMs Using In-Context Learning
	Slide 2: Constraint Modelling: An Example
	Slide 3
	Slide 5
	Slide 6
	Slide 8
	Slide 9
	Slide 13: Background: Large Language Models
	Slide 14: How to choose C?
	Slide 16: 1. LLMs as solvers
	Slide 17: 1. LLMs as solvers
	Slide 18: 2. LLMs as modellers
	Slide 19
	Slide 20: 3. Blueprint Model
	Slide 21
	Slide 22
	Slide 23: 4. Named Entity Recognition
	Slide 24
	Slide 28: Evaluation Metrics
	Slide 29: Experiments: Datasets
	Slide 30: LLMs as CP solvers? No. LLMs as CP modellers? Promising.
	Slide 31: Intermediate Representations
	Slide 32
	Slide 33: Retrieval-Augmented ICL? Yes.
	Slide 34: The more examples the better? Not exactly.
	Slide 35: What about diverse problems?
	Slide 36: Summary
	Slide 37: Key Conclusions
	Slide 38: Future Work
	Slide 39: Demo
	Slide 40

