Encoding the Hamiltonian Cycle Problem into SAT Based on Vertex Elimination

Neng-Fa Zhou

CUNY Brooklyn College and the Graduate Center

CP'24, 9/6/2024

- The Hamiltonian Cycle Problem (HCP)
 - Given a directed graph G = (V, E), synthesize a subgraph $H_G = (H_V, H_E)$ which is cycle connecting each and every vertex in H_v exactly once.
 - Degree and no-sub-cycle constraints
- Existing SAT Encodings of HCP
 - Distance (position) encoding [MiniZinc, Zhou20]
 - Reachability (relative) encoding [Prestwich03]
 - Bijection encoding [HertelHU07]
 - Lazy (incremental) encodings [Dantzig54,SohBRBT14,Heule21]

• Vertex elimination

- Simplify a complex graph by removing certain vertices from the graph while preserving important properties.
- Vertex elimination encoding for directed graph acyclicity [RankoohR22]
 - $\bullet\,$ Good for sparse graphs $\textcircled{\sc o}$, but expensive for dense graphs $\textcircled{\sc o}$
- A hybrid encoding based on vertex elimination and leaf elimination [ZhouWY23] ©
- Can vertex elimination be used to encode HCP?

- Given a directed graph G = (V, E)
- Synthesize a subgraph $H_G = (H_V, H_E)$

•
$$H_V = \{ v \mid v \in V, b_v = 1 \}$$

•
$$H_E = \{(u, v) \mid (u, v) \in E, b_{uv} = 1\}$$

• The circuit and subcircuit constraints are special cases.

- Let k be the cardinality of H_V : $k = \sum_{v \in V} b_v$.
- For each vertex v, $s_v = 1$ iff v is the starting vertex.
- For each vertex v, d_v (0 ≤ d_v ≤ n − 1) is v's distance from the starting vertex in H_G.
- Degree constraints

For each $v \in V$: $k > 1 \land b_v \rightarrow \sum_{(u,v) \in E} b_{uv} = 1$ (D-1) $k > 1 \land b_v \rightarrow \sum_{(v,w) \in E} b_{vw} = 1$ (D-2)

The Distance Encoding for HCP (Cont.)

• Constraints on the starting vertex

$$k > 1 \rightarrow \sum_{v \in V} s_v = 1$$
For each $v \in V$:
$$s_v \rightarrow b_v$$

$$s_v \rightarrow d_v = 0$$
(D-3)
(D-3)
(D-4)
(D-5)

Distance constraints

For each
$$(u, v) \in E$$
: $b_{uv} \wedge \neg s_v \rightarrow d_v = d_u + 1$ (D-6)

- Encoding size
 - $O(n^3)$ if unary encoding is used for distance variables
 - $O(n^2 \times log_2(n))$ if binary encoding is used for distance variables

Vertex Elimination Encoding for HCP

• Vertex elimination $G = (V, E) \rightarrow G' = (V', E')$

$$V' = V \times \{v\}$$

$$E' = E \setminus \{(u, v) \mid (u, v) \in E\}$$

$$\setminus \{(v, w) \mid (v, w) \in E\}$$

$$\cup \{(u, w) \mid u \in nbs^{-}(v), w \in nbs^{+}(v), u \neq w\}$$

where

$$nbs^{-}(v) = \{u \mid (u, v) \in E\} nbs^{+}(v) = \{w \mid (v, w) \in E\}.$$

• For each vertex $u \in V'$: $b'_u = b_u$

• For each arc $(u, w) \in E' \cap E$: if $(u, v) \notin E$ or $(v, w) \notin E$, then $b_{uw} = b'_{uw}$

Vertex Elimination Encoding for HCP (Cont.)

Degree constraints on the eliminated vertex v

$$k > 1 \land b_{v} \to \sum_{(u,v) \in E} b_{uv} = 1$$
(VE-1)

$$k > 1 \land b_{v} \to \sum_{(v,w) \in E} b_{vw} = 1$$
(VE-2)

No cycle of size 2 involving the eliminated vertex v

For each
$$(u, v) \in E$$
, if $(v, u) \in E$:
 $k' > 1 \rightarrow \neg b_{uv} \lor \neg b_{vu}$ (VE-3)

• A unique path from *u* to *w* through *v*

For each
$$(u, w) \in (E' \setminus E)$$
: $b'_{uw} \to b_{uv} \wedge b_{vw}$ (VE-4)
 $\sum_{(u,w)\in E' \setminus E} b'_{uw} \le 1$ (VE-5)

Vertex Elimination Encoding for HCP (Cont.)

• Ensure the mapping: $H_{G'} \leftrightarrow H_G$

For each
$$(u, v) \in E$$
, $(v, w) \in E$, $u \neq w$:
 $b_{uv} \wedge b_{vw} \rightarrow b'_{uw}$ (VE-6)
 $b_{uv} \wedge b_{vw} \rightarrow \neg b_{uw}$ (VE-7)

For each
$$(u, v) \in E$$
, $(v, w) \in E$, $u \neq w$:
 $\neg b_{uv} \lor \neg b_{vw} \rightarrow b_{uw} = b'_{uw}$ (VE-8)

Vertex Elimination Encoding for HCP (Cont.)

- The correctness of VEE is guaranteed by the fact that a Hamiltonian cycle in G' corresponds to a Hamiltonian path from a neighbor w in nbs⁺(v) to a neighbor u in nbs⁻(v) of the eliminated vertex v (u ≠ w), and the path can be extended to a cycle by adding the arcs (u, v) and (v, w).
- Encoding size
 - $O(n^3)$ variables
 - $O(n^4)$ clauses.

Hybridize Distance and Vertex Elimination Encodings

- When the graph is sparse, use vertex elimination encoding
- When the graph is dense, use distance encoding
- Strategy used in the experiment:
 - if $d \times \sigma > n$, switch to distance encoding
 - *d* is the smallest degree
 - σ is the total number of eliminated vertices so far.

Implementation and Experimental Results

- Available in Picat version 3.7 with Kissat (picat-lang.org)
- Results on the Knight's Tour problem (seconds)

Instance	VEE	DIST	HYBRID
kt12	28.75	7.11	0.32
kt14	135.80	5.77	1.23
kt16	614.23	118.45	2.72
kt18	1050.80	16.55	3.65
kt20	ТО	20.70	6.16
kt22	ТО	19.60	19.21
kt24	ТО	76.31	46.03
kt26	ТО	ТО	116.14
kt28	ТО	ТО	192.73
kt30	ТО	ТО	200.98

Experimental Results (Cont.)

• Results on Flinders instances (seconds)

Instance	VEE	DIST	HYBRID
graph162	TO	33.89	39.47
graph171	45.38	5.35	50.29
graph197	78.64	13.16	488.38
graph223	ТО	80.05	200.71
graph237	125.66	12.27	237.51
graph249	62.48	1.89	61.04
graph252	182.27	18.57	468.85
graph254	84.55	ТО	338.34
graph255	245.61	31.30	66.49
graph48	0.75	217.88	64.96

- Knight's Tour 40×40
 - DIST fails to solve it in 24 hours!
 - VEE fails to translate the instance to CNF.
 - **HYBRID** solves it in 2711 seconds. → A big advance of the SOTA!

Contributions

- A working encoding based on vertex elimination for HCP
- A hybrid encoding that combines VEE and distance encoding for HCP
- Very encouraging results
- Further work
 - Is it possible to lower the encoding size of the basic VE encoding?
 - What is the best switching strategy?
 - What encodings dould be hybridized with VEE?

Thank you! Questions?