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Introduction

The Hamiltonian Cycle Problem (HCP)
Given a directed graph G = (V ,E), synthesize a subgraph HG =
(HV ,HE) which is cycle connecting each and every vertex in Hv

exactly once.

Degree and no-sub-cycle constraints

Existing SAT Encodings of HCP

Distance (position) encoding [MiniZinc, Zhou20]
Reachability (relative) encoding [Prestwich03]
Bijection encoding [HertelHU07]
Lazy (incremental) encodings [Dantzig54,SohBRBT14,Heule21]
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Introduction (Cont.)

Vertex elimination

Simplify a complex graph by removing certain vertices from the graph
while preserving important properties.

Vertex elimination encoding for directed graph acyclicity
[RankoohR22]

Good for sparse graphs ,, but expensive for dense graphs /

A hybrid encoding based on vertex elimination and leaf elimination
[ZhouWY23] ,

Can vertex elimination be used to encode HCP?
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The HCP

Given a directed graph G = (V ,E)

Synthesize a subgraph HG = (HV ,HE)

HV = {v ∣ v ∈ V , bv = 1}
HE = {(u, v) ∣ (u, v) ∈ E , buv = 1}

The circuit and subcircuit constraints are special cases.
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The Distance Encoding for HCP

Let k be the cardinality of HV : k = ∑v∈V bv .

For each vertex v , sv = 1 iff v is the starting vertex.

For each vertex v , dv (0 ≤ dv ≤ n − 1) is v ’s distance from the starting
vertex in HG .

Degree constraints

For each v ∈ V :
k > 1 ∧ bv → ∑(u,v)∈E buv = 1 (D-1)

k > 1 ∧ bv → ∑(v ,w)∈E bvw = 1 (D-2)
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The Distance Encoding for HCP (Cont.)

Constraints on the starting vertex

k > 1→ ∑v∈V sv = 1 (D-3)
For each v ∈ V :

sv → bv (D-4)
sv → dv = 0 (D-5)

Distance constraints

For each (u, v) ∈ E : buv ∧ ¬sv → dv = du + 1 (D-6)

Encoding size

O(n3) if unary encoding is used for distance variables
O(n2 × log2(n)) if binary encoding is used for distance variables
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Vertex Elimination Encoding for HCP

Vertex elimination G = (V ,E) → G ′ = (V ′,E ′)

V ′ = V ∖ {v}
E ′ = E ∖ {(u, v) ∣ (u, v) ∈ E}

∖ {(v ,w) ∣ (v ,w) ∈ E}
∪ {(u,w) ∣ u ∈ nbs−(v), w ∈ nbs+(v), u ≠ w}

where
nbs−(v) = {u ∣ (u, v) ∈ E}
nbs+(v) = {w ∣ (v ,w) ∈ E}.

For each vertex u ∈ V ′: b′u = bu

For each arc (u,w) ∈ E ′ ∩ E :
if (u, v) ∉ E or (v ,w) ∉ E , then buw = b

′

uw
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Vertex Elimination Encoding for HCP (Cont.)

Degree constraints on the eliminated vertex v

k > 1 ∧ bv → ∑(u,v)∈E buv = 1 (VE-1)

k > 1 ∧ bv → ∑(v ,w)∈E bvw = 1 (VE-2)

No cycle of size 2 involving the eliminated vertex v

For each (u, v) ∈ E , if (v ,u) ∈ E :
k ′ > 1→ ¬buv ∨ ¬bvu (VE-3)

A unique path from u to w through v

For each (u,w) ∈ (E ′ ∖ E): b′uw → buv ∧ bvw (VE-4)

∑(u,w)∈E ′ ∖ E b′uw ≤ 1 (VE-5)
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Vertex Elimination Encoding for HCP (Cont.)

Ensure the mapping: HG ′ ↔ HG

For each (u, v) ∈ E , (v ,w) ∈ E , u ≠ w :
buv ∧ bvw → b′uw (VE-6)
buv ∧ bvw → ¬buw (VE-7)

For each (u, v) ∈ E , (v ,w) ∈ E , u ≠ w :
¬buv ∨ ¬bvw → buw = b

′

uw (VE-8)
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Vertex Elimination Encoding for HCP (Cont.)

The correctness of VEE is guaranteed by the fact that a Hamiltonian
cycle in G ′ corresponds to a Hamiltonian path from a neighbor w in
nbs+(v) to a neighbor u in nbs−(v) of the eliminated vertex v
(u ≠ w), and the path can be extended to a cycle by adding the arcs
(u, v) and (v ,w).

Encoding size

O(n3) variables
O(n4) clauses.
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Hybridize Distance and Vertex Elimination Encodings

When the graph is sparse, use vertex elimination encoding

When the graph is dense, use distance encoding

Strategy used in the experiment:
if d × σ > n, switch to distance encoding

d is the smallest degree
σ is the total number of eliminated vertices so far.
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Implementation and Experimental Results

Available in Picat version 3.7 with Kissat (picat-lang.org)

Results on the Knight’s Tour problem (seconds)

Instance VEE DIST HYBRID
kt12 28.75 7.11 0.32
kt14 135.80 5.77 1.23
kt16 614.23 118.45 2.72
kt18 1050.80 16.55 3.65
kt20 TO 20.70 6.16
kt22 TO 19.60 19.21
kt24 TO 76.31 46.03
kt26 TO TO 116.14
kt28 TO TO 192.73
kt30 TO TO 200.98
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Experimental Results (Cont.)

Results on Flinders instances (seconds)

Instance VEE DIST HYBRID
graph162 TO 33.89 39.47
graph171 45.38 5.35 50.29
graph197 78.64 13.16 488.38
graph223 TO 80.05 200.71
graph237 125.66 12.27 237.51
graph249 62.48 1.89 61.04
graph252 182.27 18.57 468.85
graph254 84.55 TO 338.34
graph255 245.61 31.30 66.49
graph48 0.75 217.88 64.96
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Experimental Results (Cont.)

Knight’s Tour 40×40

DIST fails to solve it in 24 hours!
VEE fails to translate the instance to CNF.
HYBRID solves it in 2711 seconds. → A big advance of the SOTA!
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Conclusion

Contributions

A working encoding based on vertex elimination for HCP
A hybrid encoding that combines VEE and distance encoding for HCP
Very encouraging results

Further work

Is it possible to lower the encoding size of the basic VE encoding?
What is the best switching strategy?
What encodings dould be hybridized with VEE?
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Thank you!
Questions?
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