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Algorithm Selection

• Many algorithms are proposed for 
many problems.
• There are more than 30 sorting 

algorithms proposed

• No Free Lunch: There is no 
universally best algorithm
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Source: Sorting algorithm. Wikipedia. Available at: 
https://en.wikipedia.org/wiki/Sorting_algorithm.

https://en.wikipedia.org/wiki/Sorting_algorithm


Algorithm Selection

Erdem Kuş, Özgür Akgün, Nguyen Dang, Ian Miguel Frugal Algorithm Selection

Algorithm Selection (AS): Predict the best 
algorithm for each problem instance.

Training Data: Instance features

Label: Best algorithm

Classification Type: Pairwise (binary) 
classification



Expensive Training

Labelling cost: Time spent evaluating all algorithms across all instances to 
identify the best-performing ones for training.
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Datasets
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Expensive Training: MAXSAT12-PMS
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• The top 2 algorithms perform 
4 times faster than the 
bottom 2 algorithms.

• We pay 76% of the cost for 
the bottom 3 algorithms

• Both good and bad solvers 
must be run



Motivation

1) Can we find a smaller subset that can give the same predictive performance?

• We can use Active Learning.
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Active Learning
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1) Train model with small labelled set

2) Select the most informative data 
points from the unlaballed set using 
the table

3) Label selected data points by an 
oracle

4) Update the labelled set with newly 
labeled data.

5) Repeat



Active Learning-An Example Query Table
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Measurement of 
informativeness

Query 
size

How many datapoints 
will be queried



Experimental Setup
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Dataset: 6 datasets from AsLib.

Seed: 5 seeds, 10 splits

Instance Selection Method: Active learning (uncertainty-based) & random-
based.

Query Size: 1% of the query table.



Experimental Results – Active Learning
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x-axis: Performance comparison 
of AS model on selected subset vs. 
full dataset (1 = same 
performance).

y-axis: Labelling cost of the 
selected subset (0 = no data, 1 = 
full data).

• No clear difference between 
random approach and active 
learning

Why?



Experimental Results – Active Learning
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Problems in Active Learning
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Uniform Cost: Ignores varying labelling costs.

Expensive Query: Top candidates can be expensive instances



Problems – Query Table
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Query Labelling



Query Table
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Can we eliminate these instances in query?



Motivation

1) Can we find a smaller subset that can give the same predictive performance?

• We can use Active Learning.

• We saw that Active Learning selects uninformative and expensive instances in 
query.

2) How can we eliminate costly, uninformative instances in query table?

• Timeout Predictor
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Frugal Algorithm Selection-Timeout Predictor
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• Train timeout predictor for each algorithm. 

• Use timeout predictions to eliminate timeout 
instances in query step.



Experimental Results – Timeout Predictor
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• Slightly improves performance 
on some datasets.

• In some cases, there is no 
improvement.

Why?



Experimental Results – Timeout Predictor
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Problems in Timeout Predictor
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Labelling Cost: We need to still pay high labelling cost to label an algorithm as 
timeout.



Query Table-Timeout Predictor
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Query Table-Timeout Predictor
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How can we label instances cost-efficiently in labelling?



Motivation

1) Can we find a smaller subset that can give the same predictive performance?

• We can use Active Learning.

• We saw that Active Learning selects uninformative and expensive instances 
during query.

2) How can we eliminate costly, uninformative instances during query?

• Timeout Predictor.

• We saw that it improves the performance but still expensive due to timeout 
labelling.

3) How can we label instances cost-efficiently in labelling?

• Dynamic Timeout
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Frugal Algorithm Selection-Dynamic Timeout
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• Start with a small time limit.

• Run algorithms within this time during labelling. If the algorithm doesn't finish, 
pause it.

• If prediction performance doesn't improve, gradually extend the time limit.



Query Table-Dynamic Timeout
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Query Table-Timeout Predictor
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How can we label instances cost-efficiently in labelling?



Experimental Results – Dynamic Timeout
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• DT shows consistent performance 
improvements across various 
datasets. 



Experimental Results – Dynamic Timeout
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Experimental Setup - Configurations
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• Vanilla (No TO & No DT)

• Only Timeout Predictor (TO)

• Only Dynamic Timeout (DT)

• Dynamic Timeout with Timeout Predictor (TO+DT)



Experimental Results – All Configurations
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• TO+DT and dynamic timeout 
alone significantly outperform 
other configurations.



Experimental Results – All Configurations
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Experimental Results – Overall Comparison
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• No significant difference between random and uncertainty-based selection 
methods.

• Timeout Predictor (TO) slightly improves runtime ratio
• Dynamic Timeout (DT) leads to a significant improvement.



Conclusion and Future Work
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• Algorithm selection is costly

• Active Learning (AL) is not cost-efficient for Algorithm Selection (AS).

• We propose timeout predictor (in query step) and dynamic timeout (in labelling 
step) based on AL.

• DT+TO configuration outperforms other configurations provides up to 90% cost-
efficiency.

Future Work:

Enhancement Techniques: Pre-solving schedule and cost-sensitive pairwise 
classification.

Hyper-Parameter Tuning: Explore effects of hyper-parameter tuning.

Evaluation Scope: Expand evaluation to more problem areas.



Thank You!
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https://github.com/stacs-cp/CP2024-Frugal
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