

Frugal Algorithm Selection

Erdem Kuş, Özgür Akgün, Nguyen Dang, Ian Miguel

University of St Andrews, School of Computer Science ek232@st-andrews.ac.uk

Erdem Kuş, Özgür Akgün, Nguyen Dang, Ian Miguel

Algorithm Selection

- Many algorithms are proposed for many problems.
 - There are more than 30 sorting algorithms proposed
- No Free Lunch: There is no universally best algorithm

Name 🔺	Best +	Average +	Worst +	Memory +	Stable +	Method +
Block sort	п	$n\log n$	$n\log n$	1	Yes	Insertion & Merging
Bubble sort	п	n^2	n^2	1	Yes	Exchanging
Cocktail shaker sort	п	n^2	n^2	1	Yes	Exchanging
Comb sort	$n\log n$	n^2	n^2	1	No	Exchanging
Cubesort	п	$n\log n$	$n\log n$	n	Yes	Insertion
Cycle sort	n^2	n^2	n^2	1	No	Selection
Exchange sort	n^2	n^2	n^2	1	No	Exchanging
Gnome sort	п	n^2	n^2	1	Yes	Exchanging
Heapsort	$n\log n$	$n\log n$	$n\log n$	1	No	Selection
In-place merge sort			$n\log^2 n$	1	Yes	Merging

Source: *Sorting algorithm*. Wikipedia. Available at: <u>https://en.wikipedia.org/wiki/Sorting_algorithm</u>.

Erdem Kuş, Özgür Akgün, Nguyen Dang, Ian Miguel

Algorithm Selection

Algorithm Selection (AS): Predict the best algorithm for each problem instance. Training Data: Instance features Label: Best algorithm Classification Type: Pairwise (binary) classification

Erdem Kuş, Özgür Akgün, Nguyen Dang, Ian Miguel

Expensive Training

Labelling cost: Time spent evaluating all algorithms across all instances to identify the best-performing ones for training.

Erdem Kuş, Özgür Akgün, Nguyen Dang, Ian Miguel

Datasets

Dataset	Instances	Algorithms	Features	Total Time
ASP-POTASSCO	1294	11	138	87 days
CPMP-2015	527	4	22	28 days
CSP-2010	2024	2	86	$18 \mathrm{~days}$
MAXSAT12-PMS	876	6	37	$61 \mathrm{~days}$
MAXSAT19-UCMS	572	7	54	$23 \mathrm{~days}$
QBF-2011	1368	5	46	$15 \mathrm{~days}$

Erdem Kuş, Özgür Akgün, Nguyen Dang, Ian Miguel

Expensive Training: MAXSAT12-PMS

- The top 2 algorithms perform 4 times faster than the bottom 2 algorithms.
- We pay **76%** of the cost for the bottom 3 algorithms
- Both good and bad solvers must be run

Algorithm	Runtime (Hours)
qmaxsat 0.21g 2 comp	85h
qmaxsat 0.21 comp	99h
pwbo2.1	163h
$DSWPM1_924$	$358\mathrm{h}$
akmaxsat	$383\mathrm{h}$
akmaxsat_ls	383h

Erdem Kuş, Özgür Akgün, Nguyen Dang, Ian Miguel

Motivation

1) Can we find a smaller subset that can give the same predictive performance?

• We can use Active Learning.

Erdem Kuş, Özgür Akgün, Nguyen Dang, Ian Miguel

Active Learning

1) Train model with small labelled set

2) Select the most informative data points from the unlaballed set using the table

3) Label selected data points by an oracle

4) Update the labelled set with newly labeled data.

5) Repeat

Erdem Kuş, Özgür Akgün, Nguyen Dang, Ian Miguel

Active Learning-An Example Query Table

Model	Instance	Uncertainty
Query size ('akmaxsat_ls', 'qmaxsat0.21comp') ('akmaxsat', 'akmaxsat_ls') ('akmaxsat', 'qmaxsat0.21comp')	cnf3.150.600.372700.cnf.wcnf 10tree505p.wcnf 10tree610p.wcnf 10tree605p.wcnf 10tree530p.wcnf 10tree525p.wcnf 10tree520p.wcnf 10tree515p.wcnf 10tree510p.wcnf 10tree430p.wcnf cnf3.150.450.284126.cnf.wcnf	$\begin{array}{c} 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\$
How many datapoints will be queried		Measurement of informativeness

will be queried

Erdem Kuş, Özgür Akgün, Nguyen Dang, Ian Miguel

Experimental Setup

Dataset: 6 datasets from AsLib.

Seed: 5 seeds, 10 splits

Instance Selection Method: Active learning (uncertainty-based) & randombased.

Query Size: 1% of the query table.

Erdem Kuş, Özgür Akgün, Nguyen Dang, Ian Miguel

Experimental Results – Active Learning

x-axis: Performance comparison of AS model on selected subset vs. full dataset (1 = same performance).

y-axis: Labelling cost of the selected subset (0 = no data, 1 = full data).

 No clear difference between random approach and active learning

Why?

Erdem Kuş, Özgür Akgün, Nguyen Dang, Ian Miguel

Experimental Results – Active Learning

Erdem Kuş, Özgür Akgün, Nguyen Dang, Ian Miguel

Problems in Active Learning

Uniform Cost: Ignores varying labelling costs.

Expensive Query: Top candidates can be expensive instances

Erdem Kuş, Özgür Akgün, Nguyen Dang, Ian Miguel

Problems – Query Table

Model ('akmaxsat_ls', 'qmaxsat0.21comp') ('akmaxsat', 'akmaxsat_ls') ('akmaxsat', 'akmaxsat_ls') ('akmaxsat', 'akmaxsat_ls') ('akmaxsat', 'akmaxsat_ls') ('akmaxsat', 'akmaxsat_ls') ('akmaxsat', 'akmaxsat_ls') ('akmaxsat', 'akmaxsat_ls') ('akmaxsat', 'akmaxsat_ls') ('akmaxsat', 'akmaxsat_ls') ('akmaxsat', 'qmaxsat0.21comp')	Instance cnf3.150.600.372700.cnf.wcnf 10tree505p.wcnf 10tree610p.wcnf 10tree605p.wcnf 10tree530p.wcnf 10tree525p.wcnf 10tree520p.wcnf 10tree515p.wcnf 10tree510p.wcnf 10tree430p.wcnf cnf3.150.450.284126.cnf.wcnf	Uncertainty 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	Algorithm1 0.75 3600.0 3600.0 3600.0 3600.0 3600.0 3600.0 3600.0 3600.0 3600.0 3600.0 0.87	Algorithm2 0.39 3600.0 3600.0 3600.0 3600.0 3600.0 3600.0 3600.0 3600.0 3600.0 410.12
	γ Query		Labe	γ elling

Erdem Kuş, Özgür Akgün, Nguyen Dang, Ian Miguel

Query Table

Model

('akmaxsat_ls', 'qmaxsat0.21comp')	C
('akmaxsat', 'akmaxsat_ls')	1
('akmaxsat', 'qmaxsat0.21comp')	С

Instance

cnf3.150.600.372700.cnf.wcnf
10tree505p.wcnf
10tree610p.wcnf
10tree605p.wcnf
10tree530p.wcnf
10tree525p.wcnf
10tree520p.wcnf
10tree515p.wcnf
10tree510p.wcnf
10tree430p.wcnf
cnf3.150.450.284126.cnf.wcnf

Uncertainty

 $\begin{array}{c} 0.5 \\$

Can we **eliminate** these instances in **query**?

Erdem Kuş, Özgür Akgün, Nguyen Dang, Ian Miguel

Motivation

1) Can we find a smaller subset that can give the same predictive performance?

- We can use Active Learning.
- We saw that Active Learning selects uninformative and expensive instances in query.
- 2) How can we eliminate costly, uninformative instances in query table?
- Timeout Predictor

Frugal Algorithm Selection-Timeout Predictor

- Train timeout predictor for each algorithm.
- Use timeout predictions to eliminate timeout instances in **query** step.

Erdem Kuş, Özgür Akgün, Nguyen Dang, Ian Miguel

Experimental Results – Timeout Predictor

- Slightly improves performance on some datasets.
- In some cases, there is no improvement.

Why?

Erdem Kuş, Özgür Akgün, Nguyen Dang, Ian Miguel

Experimental Results – Timeout Predictor

Erdem Kuş, Özgür Akgün, Nguyen Dang, Ian Miguel

Problems in Timeout Predictor

Labelling Cost: We need to still pay high labelling cost to label an algorithm as timeout.

Erdem Kuş, Özgür Akgün, Nguyen Dang, Ian Miguel

Query Table-Timeout Predictor

Model	Instance	Uncertainty	Algorithm1 TO	Algorithm2 TO
('akmaxsat ls', 'qmaxsat0.21comp')	cnf3.150.600.372700.cnf.wcnf	0.5	NO	NO
('akmaxsat', 'akmaxsat ls')	10tree505p.wcnf	0.5	YES	YES
('akmaxsat', 'akmaxsat ⁻ ls')	10tree610p.wcnf	0.5	YES	YES
('akmaxsat', 'akmaxsat ls')	10tree605p.wcnf	0.5	NO	YES
('akmaxsat', 'akmaxsat ⁻ ls')	10tree530p.wcnf	0.5	YES	NO
('akmaxsat', 'akmaxsat ⁻ ls')	10tree525p.wcnf	0.5	YES	YES
('akmaxsat', 'akmaxsat ⁻ ls')	10tree520p.wcnf	0.5	NO	YES
('akmaxsat', 'akmaxsat ⁻ ls')	10tree515p.wcnf	0.5	YES	NO
('akmaxsat', 'akmaxsat ⁻ ls')	10tree510p.wcnf	0.5	NO	NO
('akmaxsat', 'akmaxsat_ls')	10tree430p.wcnf	0.5	YES	YES
('akmaxsat', 'qmaxsat0.21comp')	cnt3.150.450.284126.cnf.wcnf	0.5	NO	NO

Erdem Kuş, Özgür Akgün, Nguyen Dang, Ian Miguel

Query Table-Timeout Predictor

]	Model	Instance	Uncertainty	Algorithm1	Algorithm2
(('akmaxsat_ls', 'qmaxsat0.21comp')	cnf3.150.600.372700.cnf.wcnf	0.5	0.75	0.39
	('akmaxsat', 'akmaxsat_ls')	10tree605p.wcnf	0.5	3600.0	3600.0
	('akmaxsat', 'akmaxsat_ls')	10tree530p.wcnf	0.5	3600.0	3600.0
	'akmaxsat', 'akmaxsat [s')	10tree515p.wcnf	0.5	3600.0	3600.0
	('akmaxsat', 'akmaxsat ls')	10tree510p.wcnf	0.5	3600.0	3600.0
(('akmaxsat', 'qmaxsat0.21ćomp')	cnf3.150.450.284126.cnf.wcnf	0.5	0.87	410.12

How can we label instances cost-efficiently in **labelling**?

Erdem Kuş, Özgür Akgün, Nguyen Dang, Ian Miguel

Motivation

1) Can we find a smaller subset that can give the same predictive performance?

- We can use Active Learning.
- We saw that Active Learning selects uninformative and expensive instances during query.
- 2) How can we eliminate costly, uninformative instances during query?
- Timeout Predictor.
- We saw that it improves the performance but still expensive due to timeout labelling.
- 3) How can we label instances cost-efficiently in labelling?
- Dynamic Timeout

Erdem Kuş, Özgür Akgün, Nguyen Dang, Ian Miguel

Frugal Algorithm Selection-Dynamic Timeout

- Start with a small time limit.
- Run algorithms within this time during labelling. If the algorithm doesn't finish, pause it.
- If prediction performance doesn't improve, gradually extend the time limit.

Erdem Kuş, Özgür Akgün, Nguyen Dang, Ian Miguel

Query Table-Dynamic Timeout

Model	Instance	Uncertainty	Algorithm1 TO	Algorithm2 TO
('akmaxsat ls', 'qmaxsat0.21comp')	cnf3.150.600.372700.cnf.wcnf	0.5	NO	NO
('akmaxsat', 'akmaxsat ls')	10tree505p.wcnf	0.5	YES	YES
('akmaxsat', 'akmaxsat ⁻ ls')	10tree610p.wcnf	0.5	YES	YES
('akmaxsat', 'akmaxsat ⁻ ls')	10tree605p.wcnf	0.5	NO	YES
('akmaxsat', 'akmaxsat_ls')	10tree530p.wcnf	0.5	YES	NO
('akmaxsat', 'akmaxsat_ls')	10tree525p.wcnf	0.5	YES	YES
('akmaxsat', 'akmaxsat_ls')	10tree520p.wcnf	0.5	NO	YES
('akmaxsat', 'akmaxsat_ls')	10tree515p.wcnf	0.5	YES	NO
('akmaxsat', 'akmaxsat_ls')	10tree510p.wcnf	0.5	NO	NO
('akmaxsat', 'akmaxsat_ls')	10tree430p.wcnf	0.5	YES	YES
('akmaxsat', 'qmaxsat0.21comp')	cn13.150.450.284126.cnf.wcnf	0.5	NO	NO

Erdem Kuş, Özgür Akgün, Nguyen Dang, Ian Miguel

Query Table-Timeout Predictor

]	Model	Instance	Uncertainty	Algorithm1	Algorithm2
(('akmaxsat_ls', 'qmaxsat0.21comp')	cnf3.150.600.372700.cnf.wcnf	0.5	0.75	0.39
	('akmaxsat', 'akmaxsat_ls')	10tree605p.wcnf	0.5	3600.0	3600.0
	('akmaxsat', 'akmaxsat_ls')	10tree530p.wcnf	0.5	3600.0	3600.0
	'akmaxsat', 'akmaxsat [s')	10tree515p.wcnf	0.5	3600.0	3600.0
	('akmaxsat', 'akmaxsat ls')	10tree510p.wcnf	0.5	3600.0	3600.0
(('akmaxsat', 'qmaxsat0.21ćomp')	cnf3.150.450.284126.cnf.wcnf	0.5	0.87	410.12

How can we label instances cost-efficiently in **labelling**?

Erdem Kuş, Özgür Akgün, Nguyen Dang, Ian Miguel

Experimental Results – Dynamic Timeout

• DT shows consistent performance improvements across various datasets.

Erdem Kuş, Özgür Akgün, Nguyen Dang, Ian Miguel

Experimental Results – Dynamic Timeout

Erdem Kuş, Özgür Akgün, Nguyen Dang, Ian Miguel

Experimental Setup - Configurations

- Vanilla (No TO & No DT)
- Only Timeout Predictor (TO)
- Only Dynamic Timeout (DT)
- Dynamic Timeout with Timeout Predictor (TO+DT)

Erdem Kuş, Özgür Akgün, Nguyen Dang, Ian Miguel

Experimental Results – All Configurations

 TO+DT and dynamic timeout alone significantly outperform other configurations.

Erdem Kuş, Özgür Akgün, Nguyen Dang, Ian Miguel

Experimental Results – All Configurations

Erdem Kuş, Özgür Akgün, Nguyen Dang, Ian Miguel

Experimental Results – Overall Comparison

- No significant difference between random and uncertainty-based selection methods.
- Timeout Predictor (TO) slightly improves runtime ratio
- Dynamic Timeout (DT) leads to a significant improvement.

Erdem Kuş, Özgür Akgün, Nguyen Dang, Ian Miguel

Conclusion and Future Work

- Algorithm selection is costly
- Active Learning (AL) is not cost-efficient for Algorithm Selection (AS).
- We propose timeout predictor (in query step) and dynamic timeout (in labelling step) based on AL.
- DT+TO configuration outperforms other configurations provides up to 90% costefficiency.

Future Work:

Enhancement Techniques: Pre-solving schedule and cost-sensitive pairwise classification.

Hyper-Parameter Tuning: Explore effects of hyper-parameter tuning.

Evaluation Scope: Expand evaluation to more problem areas.

Erdem Kuş, Özgür Akgün, Nguyen Dang, Ian Miguel

Thank You!

https://github.com/stacs-cp/CP2024-Frugal

Erdem Kuş, Özgür Akgün, Nguyen Dang, Ian Miguel

