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Linear Constraints

• A LC (linear constraint) is in the form:
𝑎1𝑥1 +⋯+ 𝑎𝑛𝑥𝑛 𝑜𝑝 𝑎0,

where 𝑥𝑖 are numeric variables, 𝑎𝑖 are constants, and 𝑜𝑝 ∈ {<,≤,>,≥
,=}.

• A set of LCs is in the form: 𝐴 Ԧ𝑥 ≤ 𝑏.
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Linear Constraints

• A LC corresponds to a hyperspace.

• A set of LCs corresponds to a convex polytope.
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Solution Counting
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Real domains:
Volume of the polytope

Integer domains:
Counts of the inner integer points



Solution Counting

• Let vol(P) denote the volume of P.

• Let lat(P) denote the number of integer points in P.

2024/9/6
Improved Bounds of Integer Solution Counts via Volume and 

Extending to Mixed-Integer Linear Constraints
6

Real domains:
Volume of the polytope

Integer domains:
Counts of the inner integer points



An Example

𝑎 + 𝑏 > 𝑐 ∧ 𝑎 + 𝑐 > 𝑏 ∧ 𝑏 + 𝑐 > 𝑎 ∧

(1 ≤ 𝑎 ≤ 32) ∧ (1 ≤ 𝑏 ≤ 32) ∧ (1 ≤ 𝑐 ≤ 32).

• How many assignments that can form triangles?
• 16400 integer assignments (integer solutions)

• Assume a, b, c are reals, then the volume of above formula is 16291

2024/9/6
Improved Bounds of Integer Solution Counts via Volume and 

Extending to Mixed-Integer Linear Constraints
7

≈ 16400

• From more experiments, the difference is usually very small.



Integer Count vs. Volume
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Average Running Times

Dimensions

Random Polytopes

Integer Counting Volume Computation

Volume Estimation



Integer Count vs. Volume

Can we approximate integer count via volume?
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Integer Count vs. Volume

Can we approximate integer count via volume?
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C. Ge, F. Ma, X. Ma, F. Zhang, P. Huang, and J. Zhang. Approximating integer solution counting via space 
quantification for linear constraints. In Sarit Kraus, editor, Proc. of IJCAI, pages 1697–1703. ijcai.org, 2019. 
doi:10.24963/ijcai.2019/235.



Integer Count vs. Volume

2024/9/6
Improved Bounds of Integer Solution Counts via Volume and 

Extending to Mixed-Integer Linear Constraints
11

Solution 
Space 

Volume

Integer 
Solution 

Count

Discretization

Integer Counting
• LattE
• barvinok

Volume Computation
• Vinci
Volume Estimation
• PolyVest



Integer Count vs. Volume
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Solution 
Space 

Volume

Integer 
Solution 

Count

Discretization

Integer Counting
• LattE
• barvinok

Volume Computation
• Vinci
Volume Estimation
• PolyVest

Discretization trick 

Obtaining a good approximation is 
difficult, and sometimes impossible.



Integer Count vs. Volume
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Stretch this “thin” rectangle

lat(ABCD) = 0
vol(ABCD) = 0.9



Integer Count vs. Volume
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lat(ABCD)  = 0
vol(ABCD) = 2.7 

Obtaining a good approximation is impossible in this case.



Preliminaries

• Definition: An Integer-cube is a unique unit-cube all of whose centers 
are integer points.
• Let C(P) denote the set of integer-cubes which intersect with P. 

• Similarly, we define C(B(P)).
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𝐶(𝑃) = orange + grey squares
𝐶(𝐵 𝑃 ) = orange squares

Map each integer-cube to a 
integer point.

Integer point  Integer-cube

Count  Volume



Previous Results

Theorem 1. vol 𝑃 − 𝐶 𝐵 𝑃 ≤ lat(𝑃) ≤ vol 𝑃 + 𝐶 𝐵 𝑃 .

• Intuition: The difference between vol 𝑃  and l𝑎𝑡(𝑃) is caused by 
points (integer-cubes) that are close to the boundary of P.
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Orange area is the key

Theorem 1 ⇔ |vol 𝑃 − lat(𝑃)| ≤ 𝐶 𝐵 𝑃

⇔ 𝐶 𝑃 − |𝐶(𝐵(𝑃)| ≤ lat(𝑃) ≤ 𝐶 𝑃

and 𝐶 𝑃 − |𝐶(𝐵(𝑃)| ≤ vol(𝑃) ≤ 𝐶 𝑃

How to compute?



Previous Results

Theorem 2. 𝐶 𝐵 𝑃 ≤ 2σi=1
𝑛 ς𝑖≠𝑗 𝑀𝑗 𝑃 −𝑚𝑗 𝑃 ，

where 𝑚𝑖 𝑃 = min{𝑥𝑖|𝒙 ∈ 𝑃} − 1 ，𝑀𝑖 𝑃 = max{𝑥𝑖|𝒙 ∈ 𝑃} + 1 .
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Intuition: Mapping orange
squares to green squares 
(cubes close to the surfaces 
of an outside cuboid).

Too loose



Contributions

• A novel algorithm for approximating 𝑪 𝑩 𝑷 .

• The approximation will be closer to 𝐶 𝐵 𝑃 than the previous method.

• The guarantee of the approximation is provided and proved.

• Extend Theorem 1 to the mixed-integer cases.
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The Framework of Bounds Approximation

• Generate a set of real sample points uniformly in union(𝐶 𝑃 ). 

• Count the number of samples that lie in P and union(𝐶 𝐵(𝑃 ), i.e., 
|𝑋 ∩ 𝑃| and |𝑋 ∩ union(𝐶 𝐵(𝑃 )|.
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𝐶(𝑃) = orange + grey squares
𝐶(𝐵 𝑃 ) = orange squares

Let 𝑋 denote the set of sample points

ራ

𝜅∈𝐶(𝑃)

𝜅

•
|𝐶 𝑃 |

vol(𝑃)
≈

|𝑋|

|𝑋∩𝑃|

•
|𝐶(𝐵 𝑃 )|

vol(𝑃)
≈

|𝑋∩union(𝐶 𝐵(𝑃 )|

|𝑋∩𝑃|

The sampling method will be discussed later



The Framework of Bounds Approximation

• Let Ƹ𝑟1 =
|𝑋|

|𝑋∩𝑃|
 and Ƹ𝑟2 = 1 −

|𝑋∩union(𝐶 𝐵𝑃 )|

|𝑋|
.

Theorem 3. Given a set of sample points 𝑋 in union(𝐶 𝑃 ). Then 

𝐶 𝑃 − 𝐶 𝐵 𝑃 = vol(𝑃) ∙ lim
|𝑋|→∞

Ƹ𝑟2
Ƹ𝑟1

and 

𝐶 𝑃 = vol 𝑃 ∙ lim
𝑋 →∞

1

Ƹ𝑟1
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•
|𝐶 𝑃 |

vol(𝑃)
≈

|𝑋|

|𝑋∩𝑃|

•
|𝐶(𝐵 𝑃 )|

vol(𝑃)
≈

|𝑋∩union(𝐶 𝐵(𝑃 )|

|𝑋∩𝑃|

Lower bound lb 𝑃 of lat 𝑃

Upper bound ub 𝑃 of lat 𝑃



The stopping criterion

• Since sampling points is a Bernoulli trial, then Ƹ𝑟1 and Ƹ𝑟2 are 
approximations of proportion of binomial distributions. 

• According to the binomial confidence interval, we know that 𝑟1 lies in 

interval Ƹ𝑟1 − 𝑧
1−

𝛿

4

Ƹ𝑟1 1− Ƹ𝑟1

𝑋
, Ƹ𝑟1 + 𝑧

1−
𝛿

4

Ƹ𝑟1 1− Ƹ𝑟1

𝑋
with probability at 

least 1 − 𝛿/2.
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Let Ƹ𝑒1 = 𝑧
1−

𝛿

4

Ƹ𝑟1 1− Ƹ𝑟1

𝑋
 and Ƹ𝑒2 = 𝑧

1−
𝛿

4

Ƹ𝑟2 1− Ƹ𝑟2

𝑋
.

The well-known normal approximation confidence interval.



The stopping criterion

• 𝑟1 and 𝑟2 lie in interval Ƹ𝑟1 − Ƹ𝑒1, Ƹ𝑟1 + Ƹ𝑒1 and Ƹ𝑟2 − Ƹ𝑒2, Ƹ𝑟2 + Ƹ𝑒2 with probability at 
least 1 − 𝛿/2, respectively.

• Then 𝑟1 ≥ Ƹ𝑟1 − Ƹ𝑒1 and 𝑟2 ≤ Ƹ𝑟2 + Ƹ𝑒2 with probability at least 1 − 𝛿/4.

• Thus 
𝑟2

𝑟1
≤

Ƹ𝑟2+ Ƹ𝑒2

Ƹ𝑟1− Ƹ𝑒1
with probability at least 1 − 𝛿/2.

• Finally, 
Ƹ𝑟2− Ƹ𝑒2

Ƹ𝑟1+ Ƹ𝑒1
≤

𝑟2

𝑟1
≤

Ƹ𝑟2+ Ƹ𝑒2

Ƹ𝑟1− Ƹ𝑒1
and 

1

Ƹ𝑟1+ Ƹ𝑒1
≤

1

𝑟1
≤

1

Ƹ𝑟1− Ƹ𝑒1
with probability 1 − 𝛿.
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Recall that Ƹ𝑒1 = 𝑧
1−

𝛿

4

Ƹ𝑟1 1− Ƹ𝑟1

𝑋
 and Ƹ𝑒2 = 𝑧

1−
𝛿

4

Ƹ𝑟2 1− Ƹ𝑟2

𝑋
.



The stopping criterion

Theorem 4. If |𝑋| ≥ 𝑧
1−

𝛿

4

2 ∙ (
1

𝜀
∙

1−𝑟2

𝑟2
+

1−𝜀

𝜀
∙

1−𝑟1

𝑟1
)2 and |𝑋| ≥ 𝑧

1−
𝛿

4

2 ∙

(
1+𝜀

𝜀
)2∙

1−𝑟1

𝑟1
, then Prob(|

Ƹ𝑟2

Ƹ𝑟1
−

𝑟2

𝑟1
| ≤ 𝜀 ∙

𝑟2

Ƹ𝑟1
) ≥ 1 − 𝛿 and Prob(|

1

Ƹ𝑟1
−

1

𝑟1
| ≤ 𝜀 ∙

1

Ƹ𝑟1
) ≥ 1 − 𝛿.
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Sampling

Q: How to generate sample points nearly uniformly in union(𝐶 𝑃 )?

A: Rejection sampling + Nearly uniform sampler on polytopes.
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Sampling in orange and grey 
area (non-convex).



Sampling

• Step 1: Find a larger polytope 𝑃′ s.t. union(𝐶 𝑃 ) ⊂ 𝑃′.

• Step 2: Generate points in 𝑃′ nearly uniformly.

• Step 3: Reject those points outside union(𝐶 𝑃 ).
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Sampling

• Step 1: Find a larger polytope 𝑃′ s.t. union(𝐶 𝑃 ) ⊂ 𝑃′.

• Shift surfaces of 𝑃 to obtain 𝑃′, and 𝑃′ should as small as possible.
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The larger 𝑃′, the lower 
probability of acceptance 
(lower performance).

Finding such parallel surfaces 
is an optimization problem.

Let 𝑣𝑘 = max{ Ԧ𝐴𝑘 Ԧ𝑥| − 1 ≤ 𝑥𝑖 ≤

1, 𝑖 = 1,… , 𝑛}. Then Ԧ𝐴𝑘 Ԧ𝑥 ≤
𝑏𝑘 + 𝑣𝑘 is the new LC of 𝑃′.

𝑃′ generated in this way should 

contain union 𝐶 𝑃 .



Sampling

• Step 2: Generate points in 𝑃′ nearly uniformly.

• Coordinate Directions Hit-and-run method

• Limiting distribution is uniform.

• Commonly used in approximating polytopes volume.
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Sampling

• Step 3: Reject those points outside union(𝐶 𝑃 ).

• How to efficiently check whether a point in union(𝐶 𝑃 )?
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The Framework of Bounds Approximation

• Generate a set of real sample points uniformly in union(𝐶 𝑃 ). 

• Count the number of samples that lie in P and union(𝐶 𝐵(𝑃 ) to 
approximate |𝐶 𝑃 | and 𝐶 𝑃 − |𝐶(𝐵 𝑃 )| eventually.
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•
|𝐶 𝑃 |

vol(𝑃)
≈

|𝑋|

|𝑋∩𝑃|

•
|𝐶(𝐵 𝑃 )|

vol(𝑃)
≈

|𝑋∩union(𝐶 𝐵(𝑃 )|

|𝑋∩𝑃|

Recall that by Theorem 1, 

𝐶 𝑃 − |𝐶(𝐵(𝑃)| ≤ lat(𝑃) ≤ 𝐶 𝑃 ,

𝐶 𝑃 − |𝐶(𝐵(𝑃)| ≤ vol(𝑃) ≤ 𝐶 𝑃 .
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Extend Bounds to Mixed-Integer Cases

• Mixed-Integer Linear Constraints (MILC) are constraints whose 
variables include not only reals but also integers.

• Without loss of generality, a set of MILCs 𝐹 can be written in the form 
𝐴 Ԧ𝑥 = 𝐴1 Ԧ𝑥𝐼 + 𝐴2 Ԧ𝑥𝑅 ≤ 𝑏.
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Let 𝑛𝐼 = | Ԧ𝑥𝐼| and 𝑛𝑅 = | Ԧ𝑥𝑅|. Obviously, 𝑛 = 𝑛𝐼 + 𝑛𝑅.



Extend Bounds to Mixed-Integer Cases

• Let integral(𝐹) denote the integral on ℳ 𝐹 . In detail

integral 𝐹 = ෍

𝛼𝐼∈ℳ𝐼 𝐹

vol(𝐹 Ԧ𝑥𝐼 = Ԧ𝛼𝐼 ) .
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Let ℳ 𝐹 = { Ԧ𝑥 ∈ ℤ𝑛𝐼 × ℝ𝑛𝑅: 𝐴1 Ԧ𝑥𝐼 + 𝐴2 Ԧ𝑥𝑅 ≤ 𝑏} denote the solution space of 𝐹.

Let ℳ𝐼 𝐹 ⊂ ℤ𝑛𝐼 and ℳ𝑅 𝐹 ⊂ ℝ𝑛𝑅 denote the projection from ℳ 𝐹 to 
variables over Ԧ𝑥𝐼 and Ԧ𝑥𝑅 respectively.

Let 𝐹 Ԧ𝑥𝐼 = Ԧ𝛼𝐼 denote the remaining constraints of 𝐹 by assigning Ԧ𝛼𝐼 to Ԧ𝑥𝐼.



Extend Bounds to Mixed-Integer Cases
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• 𝑥 is an integer variable,
• 𝑦 is a real variable.

integral 𝐹  is the sum 
of lengths of black lines 
parallel to y-axis.



Extend Bounds to Mixed-Integer Cases

Theorem 5. 𝐶 𝑃 − |𝐶(𝐵(𝑃)| ≤ integral 𝐹 ≤ 𝐶 𝑃 .
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It indicates that our algorithm can be directly applied for solving the 
mixed-integer cases, i.e., lb 𝑃 ≤ integral 𝐹 ≤ ub 𝑃 . 
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Benchmarks

• Random Polytopes
• Contains randomly number of integer and real variables.

• The details of generating random polytopes can be found in our paper. 

• Instances from program analysis
• We adopted the application benchmarks from previous works.

• They were generated by analyzing 7 programs (‘cubature’, ‘gjk’, ‘http-parser’, 
‘muFFT’, ‘SimpleXML’, ‘tcas’ and ‘timeout’) ranging from 0.4k to 7.7k lines of 
source code via a symbolic execution bug-finding tool. 

• There are 3803 SMT(LIA) (linear integer arithmetic) formulas in total.
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Baseline

Volume computation 
and approximation

Approximate lb 𝑃 and ub 𝑃 , s.t., 
lb 𝑃 ≤ integral 𝐹 ≤ ub 𝑃 , based 
on vol(𝑃)
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• Bounds are mostly useful.
• The overhead is negligible compared to the cost 

of volume computation or approximation.

Experimental results on random polytopes (mixed-integer cases)
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Experimental results on application instances (pure integer cases)

Comparison about the 

tightness of bounds 
ub 𝑃

lb 𝑃

(the smaller the better).



Thanks!

Homepage: gecunjing.github.io

E-mail: gecunjing@nju.edu.cn

Tools and Benchmarks: https://github.com/bearben/MixIntCount
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