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Cryptographic hash function

A cryptographic hash function h has the following properties:

© Compression: h maps a message x of arbitrary finite size to a hash h(x) of
fixed size.

® Ease of computation: for any given message x, h(x) is easy to compute.

©® Preimage resistance: for any given hash y, it is computationally infeasible to
find any of its preimages, i.e. any such message x’ that h(x’) = y.

@ Second-preimage resistance: for any given message x, it is computationally
infeasible to find x’ such that x” # x, h(x) = h(x’).

@ Collision resistance: it is computationally infeasible to find any two messages
x and x’ such that x # x’, h(x) = h(x’).

The first two properties are obligatory.
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Applications

¢ Verifying the integrity of messages and files: compare hashes calculated
before and after transmission.

¢ Password verification: they are not stored as clear text, their hashes are
stored instead.

¢ Proof-of-work: a mining reward is unlocked after some partial hash
inversions (e.g. in Bitcoin).
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¢ A method of building cryptographic hash functions from one-way compression

functions.
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e [nitialization vector (1V) has a fixed value.

¢ The compression function f takes the result so far, combines it with a
message block, and produces an intermediate result.
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MD5 — a Merkle-Damgard-based
cryptographic hash function

. v N e
proposed in 1992. E“ —

Given a 512-bit message Mi_’EVH
M= My, ..., Ms, the compression v

function produces a 128-bit hash. Ki"Evﬂ
Data is transformed in four 32-bit E‘fﬂ
registers A, B, C, D. e

64 steps; each step all registers are W
updated.

Before the 1ststep A, B, C, D are 1V,
on the last step they are hash. One MD5 step'. F is a round function, << is circular
shift, and B is addition modulo 22.
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SHA-1

e SHA-1 — a Merkle-Damgard-based
cryptographic hash function
proposed in 1995.

e Compared to MD5:

© 160-bit hash.
® 5 registers A,B,C, D, E.
® 80 steps; 4 rounds, 20 steps each.
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One SHA-1 step®. F is a round function.

2https://en.wikipedia.org/wiki/SHA-1



MD5 and SHA-1 statuses

e Since 2005, MD5 is not collision resistant.

e Since 2017, SHA-1 is not collision resistant.

3Florian Legendre et al. Encoding Hash Functions as a SAT Problem // Proc. of ICTAI 2012



MD5 and SHA-1 statuses

e Since 2005, MD5 is not collision resistant.
e Since 2017, SHA-1 is not collision resistant.
e MD5 and SHA-1 are still preimage resistant.
e MD5 and SHA-1 are still used in practice.

3Florian Legendre et al. Encoding Hash Functions as a SAT Problem // Proc. of ICTAI 2012



MD5 and SHA-1 statuses

e Since 2005, MD5 is not collision resistant.

Since 2017, SHA-1 is not collision resistant.

MD5 and SHA-1 are still preimage resistant.

MD5 and SHA-1 are still used in practice.

In 2012, the 28-step MD5 and 23-step SHA-1 were inverted (i.e. their
preimages were found) via a SAT solver?.

3Florian Legendre et al. Encoding Hash Functions as a SAT Problem // Proc. of ICTAI 2012



MD5 and SHA-1 statuses

e Since 2005, MD5 is not collision resistant.

Since 2017, SHA-1 is not collision resistant.

MD5 and SHA-1 are still preimage resistant.

MD5 and SHA-1 are still used in practice.

In 2012, the 28-step MD5 and 23-step SHA-1 were inverted (i.e. their
preimages were found) via a SAT solver?.

¢ Goal: invert 29-step MD5 and 24-step SHA-1 via SAT.

3Florian Legendre et al. Encoding Hash Functions as a SAT Problem // Proc. of ICTAI 2012
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temp < Func(B, C, D) B A KI[i] B M[g]
A+~ D

D+ C

C+ B

B+ B+ (temp <« S)

Observation: if M[g] is deleted
temp < Func(B, C, D)8 AR K|i]
for a CDCL solver the inverse problem is compared to that for i steps:

Idea: assign constant values to several bits in M[g] in step / + 1 thus forming
a family of intermediate inverse problems between steps jand / + 1.
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Intermediate inverse problems for MD5

¢ jis varied from 1 to 31 to form 31 intermediate inverse problems.
* weakM is M[g] with 32 — j rightmost bits assigned to 0.

e Usually j = 1 is the simplest (close to inverting / steps), while j = 31 is the
hardest (close to inverting i + 1) steps).

A weakened (i + 1)-th step of MD5:

weakM «— (M[g] > (32 — j)) < (32 — )
temp <+ Func(B, C, D) B AH K[/ B weakM
A+~ D

D+ C

C+ B

B <« B+ (temp <« S)

¢ The j-th intermediate MD5 function between i and i + 1, is called (/i j/32)-step
MD5.



Intermediate inverse problems for SHA-1

* The main hardness lies in M[g] as well.

¢ 31 intermediate inverse problems are formed in the same way as for MD5.
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Basic SAT encoding

e The best SAT encoding for SHA-1 so far is Vegard Nossum’s encoding®.

e Compared to the competitors, it produces more compact CNFs which are
easier for CDCL solvers.

¢ The main novelty:addition modulo 232 is expressed as a logic gate circuit and
encoded in the clausal form using the ESPRESSO minimizer.

e An implementation is available online®.

¢ In the present study, the implementation is extended to maintain MD5.

“Vegard Nossum. SAT-based preimage attacks on SHA-1. Master’s thesis, University of Oslo,
Department of Informatics, 2012.
Shttps://github.com/vegard/shal-sat
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SAT encoding of intermediate inverse problems

® One cannot assign 0 to 32 — j M[g]’s bits directly in the CNF since in all
previous steps M[g] is used as usual.
* To encode the j-th intermediate inverse problem between steps iand i + 1:
@ 32-bit word weakM is introduced in the form of 32 Boolean variables.
@® The rightmost 32 — j bits of weakM are assigned to 0 via adding unit clauses.

® The equality conditions for the leftmost j bits of weakM and the corresponding j
bits of M[g] are added in the form of j x 2 binary clauses.

@ 32 variables of weakW are used instead of M[g]’s variables in step i + 1.

Table: Characteristics of CNFs.

Hash Steps  Variables Clauses Literals
SHA-1 23 4 288 132672 873727
SHA-1 2316/32 4480 138812 913700
SHA-1 24 4 448 138 764 913 620
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Solving intermediate inverse problems by Kissat

e A state-of-the-art CDCL solver Kissat® of version 3.0 is used.

e 33 inverse problems were considered for SHA-1: 22 steps, 31 intermediate
problems between steps 22 and 23, and 23 steps.

e For each inverse problem, 10 SAT instances were generated: all 1s hash
(1hash), all 0s hash, and 8 random hashes.

e PC with 16-core CPU.

e Time limit 24 hours.

8Armin Biere and Mathias Fleury. Gimsatul, IsaSAT and Kissat entering the SAT Competition
2022. In Proc. of SAT Competition 2022.
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Tuning a CDCL solver on intermediate inverse problems

e Kissat has 90 integer parameters.

e Kissat can be tuned — one can find a set of parameters’ values that
minimizes Kissat’s total runtime (or PAR2) on a set of SAT instances.

* Problem: the number of values varies from 2 to millions, so it is infeasible to
try all possible sets of parameters’ values.

e Solution: a metaheuristic algorithm tunes the solver without checking all sets.

¢ |dea: to invert / + 1 steps, tune Kissat on intermediate inverse problems
between steps jand j + 1.
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Tuning a CDCL solver on intermediate inverse problems

e Implementations of metaheuristic algorithms: SMAC3, PyDGGA.

* (1+1)-EA (Evolutionary Algorithm) was chosen for tuning because of its
simplicity.

@ Consider n parameters.

® New set of values: the value of each parameter is changed with probability 1/n.

® Any value can be assigned, but with high probability it will be the closest to the
current one.
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Tuning Kissat for SHA-1

¢ 16 CNFs in the training set: the last 15 intermediate inverse problems
between steps 21-22 and inverting 22-step SHA-1, all for 1-hash.

e The total runtime on them is 1 hour 58 minutes on 1 CPU core.
e 3 seeds for tuning, each on 16-core CPU during 24 hours.

e The best set of parameters’ values: 22 minutes in total (5 times faster).



Tuning Kissat for SHA-1

Table: The best KiISSAT’s configuration found for SHA-1.

Parameter Default value  Found value
backbonerounds 100 10
definitionticks 1 000 000 100
eliminatebound 16 32
eliminateclslim 100 10
emafast 33 10
minimizedepth 1000 100
restartmargin 10 20
stable 1 2
sweepfliprounds 1 5
sweepmaxclauses 4 096 2 147 483 647
sweepvars 128 64
vivifytier1 3 2




Tuning Kissat for SHA-1

—o— kissat3_tuned ﬁ>
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Comparison of the default KISSAT with its tuned version on intermediate inverse problems
for steps 22-24 of SHA-1, 1-hash.
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Inverting 24-step SHA-1

¢ The Cube-and-Conquer method was applied: a given formula is split via
lookahead into a family of simpler subformulas, which are solved by a CDCL
solver’.

e The lookahead solver march_cu split the inverse problem for 24-step SHA-1
into 166 subformulas.

e The tuned Kissat was run on the subformulas on a supercomputer (166 CPU
cores). A preimage was found in 23 hours.

Table: A preimage of 160 1s produced by 24-step SHA-1.

Oxa6bcb5c463 0x182655e0 0x2cbbabf0 0xe0028033
0x8c3779%1 0x98635880 0xcbb822e 0x297efce’
0x59987038 0xd764eca9 0x7ed9801d 0Oxdde4dfleO
0x524e678 Oxa8ced7dc 0xa813fd76 0x8b58e09f

"Marijn Heule et al. Cube and Conquer: Guiding CDCL SAT Solvers by Lookaheads // HVG 2011.
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Tuning Kissat for MD5

¢ 16 CNFs in the training set: the first 16 intermediate inverse problems
between steps 27-28 for 1-hash.

e The total runtime on them is 14 minutes on 1 CPU core.
e 3 seeds for tuning, each on 16-core CPU during 24 hours.

® The best set of parameters’ values: 4 minutes in total (3 times faster).



Tuning Kissat for MD5

Table: The best KISSAT’s configuration found for MD5.

Parameter Default value Found value
chronolevels 100 1 000
decay 50 32
definitionticks 1 000 000 100
eliminatebound 16 2
eliminateocclim 2 000 1 000
emaslow 100 000 75 000
minimizedepth 1 000 100
restartmargin 10 20
shrink 3 0
stable 1 2
substituterounds 2 32
subsumecilslim 1 000 10 000
sweepmaxclauses 4 096 2048




Tuning Kissat for MD5
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Comparison of the default KISSAT with its tuned version on intermediate inverse problems
for steps 28-29 of MD5, 1-hash.
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Inverting 29-step MD5

e The lookahead solver march_cu split the inverse problem for 29-step MD5 into
74 470 subformulas.

¢ The tuned Kissat was run on the subformulas on a supercomputer (540 CPU
cores).

¢ A preimage was found in 37 hours.

Table: A preimage of 128 1s produced by 29-step MD5-1.

0xel051la%e 0x48120773 0x996a5457 O0Oxaaald815
0x37d8149c 0x5f999c05 0x182baldb O0Oxdfffle73
Oxc5db0a2f 0x44430b2a 0xa269f5a2 0x69781b85
0x2b7f0939 O0Oxclff3c22 0xc55e990f 0x96ba3fb8




Conclusions

O A new type of intermediate inverse problems for cryptographic hash functions
was proposed.

® A CDCL solver was tuned on intermediate inverse problems for MD5 and
SHA-1.

© 29-step MD5 and 24-step SHA-1 were inverted for the first time via the tuned
solver.

@ In the future, SHA-256 will be studied.
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Thank you for your attention! Questions?



