Inverting Step-reduced SHA-1 and MD5 by Parameterized

SAT Solvers

Oleg Zaikin
ISDCT SB RAS, Russia

CP 2024

© Cryptographic hash functions MD5 and SHA-1

® Intermediate inverse problems for MD5 and SHA-1

® SAT encoding

@ Solving intermediate inverse problems by Kissat

@ Tuning Kissat

0 Inverting 24-step SHA-1 and 29-step MD5 by parameterized Kissat

Cryptographic hash function

A cryptographic hash function h has the following properties:

© Compression: h maps a message x of arbitrary finite size to a hash h(x) of
fixed size.

Cryptographic hash function

A cryptographic hash function h has the following properties:

© Compression: h maps a message x of arbitrary finite size to a hash h(x) of
fixed size.

® Ease of computation: for any given message x, h(x) is easy to compute.

Cryptographic hash function

A cryptographic hash function h has the following properties:

© Compression: h maps a message x of arbitrary finite size to a hash h(x) of
fixed size.

® Ease of computation: for any given message x, h(x) is easy to compute.

©® Preimage resistance: for any given hash y, it is computationally infeasible to
find any of its preimages, i.e. any such message x’ that h(x’) = y.

Cryptographic hash function

A cryptographic hash function h has the following properties:

© Compression: h maps a message x of arbitrary finite size to a hash h(x) of
fixed size.

® Ease of computation: for any given message x, h(x) is easy to compute.

©® Preimage resistance: for any given hash y, it is computationally infeasible to
find any of its preimages, i.e. any such message x’ that h(x’) = y.

@ Second-preimage resistance: for any given message x, it is computationally
infeasible to find x’ such that x” # x, h(x) = h(x’).

Cryptographic hash function

A cryptographic hash function h has the following properties:

© Compression: h maps a message x of arbitrary finite size to a hash h(x) of
fixed size.

® Ease of computation: for any given message x, h(x) is easy to compute.

©® Preimage resistance: for any given hash y, it is computationally infeasible to
find any of its preimages, i.e. any such message x’ that h(x’) = y.

@ Second-preimage resistance: for any given message x, it is computationally
infeasible to find x’ such that x” # x, h(x) = h(x’).

@ Collision resistance: it is computationally infeasible to find any two messages
x and x’ such that x # x’, h(x) = h(x’).

Cryptographic hash function

A cryptographic hash function h has the following properties:

© Compression: h maps a message x of arbitrary finite size to a hash h(x) of
fixed size.

® Ease of computation: for any given message x, h(x) is easy to compute.

©® Preimage resistance: for any given hash y, it is computationally infeasible to
find any of its preimages, i.e. any such message x’ that h(x’) = y.

@ Second-preimage resistance: for any given message x, it is computationally
infeasible to find x’ such that x” # x, h(x) = h(x’).

@ Collision resistance: it is computationally infeasible to find any two messages
x and x’ such that x # x’, h(x) = h(x’).

The first two properties are obligatory.

Applications

¢ Verifying the integrity of messages and files: compare hashes calculated
before and after transmission.

Applications

¢ Verifying the integrity of messages and files: compare hashes calculated
before and after transmission.

¢ Password verification: they are not stored as clear text, their hashes are
stored instead.

Applications

¢ Verifying the integrity of messages and files: compare hashes calculated
before and after transmission.

¢ Password verification: they are not stored as clear text, their hashes are
stored instead.

¢ Proof-of-work: a mining reward is unlocked after some partial hash
inversions (e.g. in Bitcoin).

Merkle—Damgard construction

¢ A method of building cryptographic hash functions from one-way compression
functions.

Merkle—Damgard construction

¢ A method of building cryptographic hash functions from one-way compression

functions.
Messagel Message o Messag
block 1| block 2 block n
Messagel Message o Message Length
block 1| block 2 block n| padding

R
-~

e [nitialization vector (1V) has a fixed value.

¢ The compression function f takes the result so far, combines it with a
message block, and produces an intermediate result.

e MD5 — a Merkle-Damgard-based
cryptographic hash function
proposed in 1992.

e MD5 — a Merkle-Damgard-based
cryptographic hash function
proposed in 1992.

e Given a 512-bit message
M= My, ..., Ms, the compression
function produces a 128-bit hash.

e MD5 — a Merkle-Damgard-based
cryptographic hash function
proposed in 1992.

e Given a 512-bit message
M= My, ..., Ms, the compression
function produces a 128-bit hash.

e Data is transformed in four 32-bit
registers A, B, C, D.

One MD5 step'. F is a round function, < is circular
shift, and B is addition modulo 22.

MD5 — a Merkle-Damgard-based
cryptographic hash function

. v N e
proposed in 1992. E“ —

Given a 512-bit message Mi*E'ﬂ
M= My, ..., Ms, the compression v
function produces a 128-bit hash. Ki"Evﬂ
Data is transformed in four 32-bit E‘fﬂ
registers A, B, C, D. e
64 steps; each step all registers are W
updated.
L Aalefc]o]

One MD5 step'. F is a round function, < is circular
shift, and B is addition modulo 22.

MD5 — a Merkle-Damgard-based
cryptographic hash function

. v N e
proposed in 1992. E“ —

Given a 512-bit message Mi_’EVH
M= My, ..., Ms, the compression v

function produces a 128-bit hash. Ki"Evﬂ
Data is transformed in four 32-bit E‘fﬂ
registers A, B, C, D. e

64 steps; each step all registers are W
updated.

Before the 1ststep A, B, C, D are 1V,
on the last step they are hash. One MD5 step'. F is a round function, << is circular
shift, and B is addition modulo 22.

SHA-1

e SHA-1 — a Merkle-Damgard-based
cryptographic hash function
proposed in 1995.

SHA-1

e SHA-1 — a Merkle-Damgard-based
cryptographic hash function
proposed in 1995.

e Compared to MD5:

© 160-bit hash.
® 5 registers A,B,C, D, E.
® 80 steps; 4 rounds, 20 steps each.

W,

1 —Il_f_\
I_*_I_*_II_JI_I_I

Kt

A fcefofe]

One SHA-1 step®. F is a round function.

2https://en.wikipedia.org/wiki/SHA-1

MD5 and SHA-1 statuses

e Since 2005, MD5 is not collision resistant.

e Since 2017, SHA-1 is not collision resistant.

3Florian Legendre et al. Encoding Hash Functions as a SAT Problem // Proc. of ICTAI 2012

MD5 and SHA-1 statuses

e Since 2005, MD5 is not collision resistant.
e Since 2017, SHA-1 is not collision resistant.
e MD5 and SHA-1 are still preimage resistant.
e MD5 and SHA-1 are still used in practice.

3Florian Legendre et al. Encoding Hash Functions as a SAT Problem // Proc. of ICTAI 2012

MD5 and SHA-1 statuses

e Since 2005, MD5 is not collision resistant.

Since 2017, SHA-1 is not collision resistant.

MD5 and SHA-1 are still preimage resistant.

MD5 and SHA-1 are still used in practice.

In 2012, the 28-step MD5 and 23-step SHA-1 were inverted (i.e. their
preimages were found) via a SAT solver?.

3Florian Legendre et al. Encoding Hash Functions as a SAT Problem // Proc. of ICTAI 2012

MD5 and SHA-1 statuses

e Since 2005, MD5 is not collision resistant.

Since 2017, SHA-1 is not collision resistant.

MD5 and SHA-1 are still preimage resistant.

MD5 and SHA-1 are still used in practice.

In 2012, the 28-step MD5 and 23-step SHA-1 were inverted (i.e. their
preimages were found) via a SAT solver?.

¢ Goal: invert 29-step MD5 and 24-step SHA-1 via SAT.

3Florian Legendre et al. Encoding Hash Functions as a SAT Problem // Proc. of ICTAI 2012

® Intermediate inverse problems for MD5 and SHA-1

® SAT encoding

@ Solving intermediate inverse problems by Kissat

@ Tuning Kissat

0 Inverting 24-step SHA-1 and 29-step MD5 by parameterized Kissat

Intermediate inverse problems for MD5

The (i + 1)-th step of MD5:

temp < Func(B, C, D) B A KI[i] B M[g]
A+~ D

D+ C

C+ B

B+ B+ (temp <« S)

Intermediate inverse problems for MD5

The (i + 1)-th step of MD5:

temp < Func(B, C, D) B A KI[i] B M[g]
A+~ D

D+ C

C+ B

B+ B+ (temp <« S)

Observation: if M[g] is deleted
temp < Func(B, C, D)8 AR K|i]
for a CDCL solver the inverse problem is compared to that for i steps:

Intermediate inverse problems for MD5

The (i + 1)-th step of MD5:

temp < Func(B, C, D) B A KI[i] B M[g]
A+~ D

D+ C

C+ B

B+ B+ (temp <« S)

Observation: if M[g] is deleted
temp < Func(B, C, D)8 AR K|i]
for a CDCL solver the inverse problem is compared to that for i steps:

Idea: assign constant values to several bits in M[g] in step / + 1 thus forming
a family of intermediate inverse problems between steps jand / + 1.

Intermediate inverse problems for MD5

¢ jis varied from 1 to 31 to form 31 intermediate inverse problems.

Intermediate inverse problems for MD5

¢ jis varied from 1 to 31 to form 31 intermediate inverse problems.

* weakM is M[g] with 32 — j rightmost bits assigned to 0.

Intermediate inverse problems for MD5

¢ jis varied from 1 to 31 to form 31 intermediate inverse problems.
* weakM is M[g] with 32 — j rightmost bits assigned to 0.

e Usually j = 1 is the simplest (close to inverting / steps), while j = 31 is the
hardest (close to inverting i + 1) steps).

Intermediate inverse problems for MD5

¢ jis varied from 1 to 31 to form 31 intermediate inverse problems.
* weakM is M[g] with 32 — j rightmost bits assigned to 0.

e Usually j = 1 is the simplest (close to inverting / steps), while j = 31 is the
hardest (close to inverting i + 1) steps).

A weakened (i + 1)-th step of MD5:

weakM «— (M[g] > (32 — j)) < (32 —)
temp <+ Func(B, C, D) B AH K[/ B weakM
A+~ D

D+ C

C+ B

B <« B+ (temp <« S)

Intermediate inverse problems for MD5

¢ jis varied from 1 to 31 to form 31 intermediate inverse problems.
* weakM is M[g] with 32 — j rightmost bits assigned to 0.

e Usually j = 1 is the simplest (close to inverting / steps), while j = 31 is the
hardest (close to inverting i + 1) steps).

A weakened (i + 1)-th step of MD5:

weakM «— (M[g] > (32 — j)) < (32 —)
temp <+ Func(B, C, D) B AH K[/ B weakM
A+~ D

D+ C

C+ B

B <« B+ (temp <« S)

¢ The j-th intermediate MD5 function between i and i + 1, is called (/i j/32)-step
MD5.

Intermediate inverse problems for SHA-1

* The main hardness lies in M[g] as well.

¢ 31 intermediate inverse problems are formed in the same way as for MD5.

(2]
©® SAT encoding

@ Solving intermediate inverse problems by Kissat
@ Tuning Kissat
0 Inverting 24-step SHA-1 and 29-step MD5 by parameterized Kissat

Basic SAT encoding

e The best SAT encoding for SHA-1 so far is Vegard Nossum’s encoding®.

“Vegard Nossum. SAT-based preimage attacks on SHA-1. Master’s thesis, University of Oslo,
Department of Informatics, 2012.
Shttps://github.com/vegard/shal-sat

https://github.com/vegard/sha1-sat

Basic SAT encoding

e The best SAT encoding for SHA-1 so far is Vegard Nossum’s encoding®.

e Compared to the competitors, it produces more compact CNFs which are
easier for CDCL solvers.

“Vegard Nossum. SAT-based preimage attacks on SHA-1. Master’s thesis, University of Oslo,
Department of Informatics, 2012.
Shttps://github.com/vegard/shal-sat

https://github.com/vegard/sha1-sat

Basic SAT encoding

e The best SAT encoding for SHA-1 so far is Vegard Nossum’s encoding®.

e Compared to the competitors, it produces more compact CNFs which are
easier for CDCL solvers.

¢ The main novelty:addition modulo 232 is expressed as a logic gate circuit and
encoded in the clausal form using the ESPRESSO minimizer.

“Vegard Nossum. SAT-based preimage attacks on SHA-1. Master’s thesis, University of Oslo,
Department of Informatics, 2012.
Shttps://github.com/vegard/shal-sat

https://github.com/vegard/sha1-sat

Basic SAT encoding

e The best SAT encoding for SHA-1 so far is Vegard Nossum’s encoding®.

e Compared to the competitors, it produces more compact CNFs which are
easier for CDCL solvers.

¢ The main novelty:addition modulo 232 is expressed as a logic gate circuit and
encoded in the clausal form using the ESPRESSO minimizer.

e An implementation is available online®.

“Vegard Nossum. SAT-based preimage attacks on SHA-1. Master’s thesis, University of Oslo,
Department of Informatics, 2012.
Shttps://github.com/vegard/shal-sat

https://github.com/vegard/sha1-sat

Basic SAT encoding

e The best SAT encoding for SHA-1 so far is Vegard Nossum’s encoding®.

e Compared to the competitors, it produces more compact CNFs which are
easier for CDCL solvers.

¢ The main novelty:addition modulo 232 is expressed as a logic gate circuit and
encoded in the clausal form using the ESPRESSO minimizer.

e An implementation is available online®.

¢ In the present study, the implementation is extended to maintain MD5.

“Vegard Nossum. SAT-based preimage attacks on SHA-1. Master’s thesis, University of Oslo,
Department of Informatics, 2012.
Shttps://github.com/vegard/shal-sat

https://github.com/vegard/sha1-sat

SAT encoding of intermediate inverse problems

® One cannot assign 0 to 32 — j M[g]’s bits directly in the CNF since in all
previous steps M[g] is used as usual.

SAT encoding of intermediate inverse problems

® One cannot assign 0 to 32 — j M[g]’s bits directly in the CNF since in all
previous steps M[g] is used as usual.
* To encode the j-th intermediate inverse problem between steps iand i + 1:
@ 32-bit word weakM is introduced in the form of 32 Boolean variables.
@® The rightmost 32 — j bits of weakM are assigned to 0 via adding unit clauses.

® The equality conditions for the leftmost j bits of weakM and the corresponding j
bits of M[g] are added in the form of j x 2 binary clauses.

@ 32 variables of weakW are used instead of M[g]'s variables in step i + 1.

SAT encoding of intermediate inverse problems

® One cannot assign 0 to 32 — j M[g]’s bits directly in the CNF since in all
previous steps M[g] is used as usual.
* To encode the j-th intermediate inverse problem between steps iand i + 1:
@ 32-bit word weakM is introduced in the form of 32 Boolean variables.
@® The rightmost 32 — j bits of weakM are assigned to 0 via adding unit clauses.

® The equality conditions for the leftmost j bits of weakM and the corresponding j
bits of M[g] are added in the form of j x 2 binary clauses.

@ 32 variables of weakW are used instead of M[g]’s variables in step i + 1.

Table: Characteristics of CNFs.

Hash Steps Variables Clauses Literals
SHA-1 23 4 288 132672 873727
SHA-1 2316/32 4480 138812 913700
SHA-1 24 4 448 138 764 913 620

o

(2]

(3]

@ Solving intermediate inverse problems by Kissat

@® Tuning Kissat

0 Inverting 24-step SHA-1 and 29-step MD5 by parameterized Kissat

Solving intermediate inverse problems by Kissat

e A state-of-the-art CDCL solver Kissat® of version 3.0 is used.

8Armin Biere and Mathias Fleury. Gimsatul, IsaSAT and Kissat entering the SAT Competition
2022. In Proc. of SAT Competition 2022.

Solving intermediate inverse problems by Kissat

e A state-of-the-art CDCL solver Kissat® of version 3.0 is used.

e 33 inverse problems were considered for SHA-1: 22 steps, 31 intermediate
problems between steps 22 and 23, and 23 steps.

8Armin Biere and Mathias Fleury. Gimsatul, IsaSAT and Kissat entering the SAT Competition
2022. In Proc. of SAT Competition 2022.

Solving intermediate inverse problems by Kissat

e A state-of-the-art CDCL solver Kissat® of version 3.0 is used.

e 33 inverse problems were considered for SHA-1: 22 steps, 31 intermediate
problems between steps 22 and 23, and 23 steps.

e For each inverse problem, 10 SAT instances were generated: all 1s hash
(1hash), all 0s hash, and 8 random hashes.

8Armin Biere and Mathias Fleury. Gimsatul, IsaSAT and Kissat entering the SAT Competition
2022. In Proc. of SAT Competition 2022.

Solving intermediate inverse problems by Kissat

e A state-of-the-art CDCL solver Kissat® of version 3.0 is used.

e 33 inverse problems were considered for SHA-1: 22 steps, 31 intermediate
problems between steps 22 and 23, and 23 steps.

e For each inverse problem, 10 SAT instances were generated: all 1s hash
(1hash), all 0s hash, and 8 random hashes.

e PC with 16-core CPU.

8Armin Biere and Mathias Fleury. Gimsatul, IsaSAT and Kissat entering the SAT Competition
2022. In Proc. of SAT Competition 2022.

Solving intermediate inverse problems by Kissat

e A state-of-the-art CDCL solver Kissat® of version 3.0 is used.

e 33 inverse problems were considered for SHA-1: 22 steps, 31 intermediate
problems between steps 22 and 23, and 23 steps.

e For each inverse problem, 10 SAT instances were generated: all 1s hash
(1hash), all 0s hash, and 8 random hashes.

e PC with 16-core CPU.

e Time limit 24 hours.

8Armin Biere and Mathias Fleury. Gimsatul, IsaSAT and Kissat entering the SAT Competition
2022. In Proc. of SAT Competition 2022.

HA-1
Boxplots for S

24 h 4
2 min

d
swnn
jwyiebol)

S 3|

(91e>

L ez
” C&/0e e
” Nm,\mw 2z
” Ce/92 2o
” NM\VN 2z
” NM\NN 2z
” &0z 2z
I Celer e
I 2e/9r 2z
” &by 2o
L /ey e
” NM\S. 2z
” 2/ 2z

” [457°) 2z

” (453 2z

” 2/ 2z

- ze

=
P
2
5
53
o
m

L g2
L N.n.\omuw
L NM\mNAN
L N.n.\wwuw
L NM\VNAN
L NM\NNAN
L Nm,\owmw
L N.n.\mwuw
L Nm;\wwmw
L NM\VwAN
L wmxwwmw
L NM\SAN
L Nm,\wmw

L Nm.\wmw

L NM\VAN

L NM\NNN

144

12 h

30 min 4
2 min A

dD
|awnn
olwyyebol)

S H

(31ed

1 sec

OO0

©® Tuning Kissat
0 Inverting 24-step SHA-1 and 29-step MD5 by parameterized Kissat

Tuning a CDCL solver on intermediate inverse problems

e Kissat has 90 integer parameters.

Tuning a CDCL solver on intermediate inverse problems

e Kissat has 90 integer parameters.

e Kissat can be tuned — one can find a set of parameters’ values that
minimizes Kissat’s total runtime (or PAR2) on a set of SAT instances.

Tuning a CDCL solver on intermediate inverse problems

e Kissat has 90 integer parameters.

e Kissat can be tuned — one can find a set of parameters’ values that
minimizes Kissat’s total runtime (or PAR2) on a set of SAT instances.

* Problem: the number of values varies from 2 to millions, so it is infeasible to
try all possible sets of parameters’ values.

Tuning a CDCL solver on intermediate inverse problems

e Kissat has 90 integer parameters.

e Kissat can be tuned — one can find a set of parameters’ values that
minimizes Kissat’s total runtime (or PAR2) on a set of SAT instances.

* Problem: the number of values varies from 2 to millions, so it is infeasible to
try all possible sets of parameters’ values.

e Solution: a metaheuristic algorithm tunes the solver without checking all sets.

Tuning a CDCL solver on intermediate inverse problems

e Kissat has 90 integer parameters.

e Kissat can be tuned — one can find a set of parameters’ values that
minimizes Kissat’s total runtime (or PAR2) on a set of SAT instances.

* Problem: the number of values varies from 2 to millions, so it is infeasible to
try all possible sets of parameters’ values.

e Solution: a metaheuristic algorithm tunes the solver without checking all sets.

¢ |dea: to invert / + 1 steps, tune Kissat on intermediate inverse problems
between steps jand j + 1.

Tuning a CDCL solver on intermediate inverse problems

e Implementations of metaheuristic algorithms: SMAC3, PyDGGA.

Tuning a CDCL solver on intermediate inverse problems

e Implementations of metaheuristic algorithms: SMAC3, PyDGGA.

* (1+1)-EA (Evolutionary Algorithm) was chosen for tuning because of its
simplicity.

Tuning a CDCL solver on intermediate inverse problems

e Implementations of metaheuristic algorithms: SMAC3, PyDGGA.

* (1+1)-EA (Evolutionary Algorithm) was chosen for tuning because of its
simplicity.

@ Consider n parameters.

® New set of values: the value of each parameter is changed with probability 1/n.

® Any value can be assigned, but with high probability it will be the closest to the
current one.

o
2]
3]
o
(5]
(6]

Inverting 24-step SHA-1 and 29-step MD5 by parameterized Kissat

Tuning Kissat for SHA-1

¢ 16 CNFs in the training set: the last 15 intermediate inverse problems
between steps 21-22 and inverting 22-step SHA-1, all for 1-hash.

Tuning Kissat for SHA-1

¢ 16 CNFs in the training set: the last 15 intermediate inverse problems
between steps 21-22 and inverting 22-step SHA-1, all for 1-hash.

e The total runtime on them is 1 hour 58 minutes on 1 CPU core.

Tuning Kissat for SHA-1

¢ 16 CNFs in the training set: the last 15 intermediate inverse problems
between steps 21-22 and inverting 22-step SHA-1, all for 1-hash.

e The total runtime on them is 1 hour 58 minutes on 1 CPU core.

e 3 seeds for tuning, each on 16-core CPU during 24 hours.

Tuning Kissat for SHA-1

¢ 16 CNFs in the training set: the last 15 intermediate inverse problems
between steps 21-22 and inverting 22-step SHA-1, all for 1-hash.

e The total runtime on them is 1 hour 58 minutes on 1 CPU core.
e 3 seeds for tuning, each on 16-core CPU during 24 hours.

e The best set of parameters’ values: 22 minutes in total (5 times faster).

Tuning Kissat for SHA-1

Table: The best KiISSAT’s configuration found for SHA-1.

Parameter Default value Found value
backbonerounds 100 10
definitionticks 1 000 000 100
eliminatebound 16 32
eliminateclslim 100 10
emafast 33 10
minimizedepth 1000 100
restartmargin 10 20
stable 1 2
sweepfliprounds 1 5
sweepmaxclauses 4 096 2 147 483 647
sweepvars 128 64
vivifytier1 3 2

Tuning Kissat for SHA-1

—o— kissat3_tuned ﬁ>
—+— kissat3

80000

70000

60000

50000

40000 /
30000

CPU time (s)

20000
10000
0 : : - -
5 10 15 20 25 30 35 40
instances

Comparison of the default KISSAT with its tuned version on intermediate inverse problems
for steps 22-24 of SHA-1, 1-hash.

Inverting 24-step SHA-1

¢ The Cube-and-Conquer method was applied: a given formula is split via
lookahead into a family of simpler subformulas, which are solved by a CDCL
solver”.

"Marijn Heule et al. Cube and Conquer: Guiding CDCL SAT Solvers by Lookaheads // HVG 2011.

Inverting 24-step SHA-1

¢ The Cube-and-Conquer method was applied: a given formula is split via
lookahead into a family of simpler subformulas, which are solved by a CDCL
solver”.

e The lookahead solver march_cu split the inverse problem for 24-step SHA-1
into 166 subformulas.

"Marijn Heule et al. Cube and Conquer: Guiding CDCL SAT Solvers by Lookaheads // HVG 2011.

Inverting 24-step SHA-1

¢ The Cube-and-Conquer method was applied: a given formula is split via
lookahead into a family of simpler subformulas, which are solved by a CDCL
solver’.

e The lookahead solver march_cu split the inverse problem for 24-step SHA-1
into 166 subformulas.

e The tuned Kissat was run on the subformulas on a supercomputer (166 CPU
cores). A preimage was found in 23 hours.

Table: A preimage of 160 1s produced by 24-step SHA-1.

Oxa6bcb5c463 0x182655e0 0x2cbbabf0 0xe0028033
0x8c3779%1 0x98635880 0xcbb822e 0x297efce’
0x59987038 0xd764eca9 0x7ed9801d 0Oxdde4dfleO
0x524e678 Oxa8ced7dc 0xa813fd76 0x8b58e09f

"Marijn Heule et al. Cube and Conquer: Guiding CDCL SAT Solvers by Lookaheads // HVG 2011.

Tuning Kissat for MD5

¢ 16 CNFs in the training set: the first 16 intermediate inverse problems
between steps 27-28 for 1-hash.

Tuning Kissat for MD5

¢ 16 CNFs in the training set: the first 16 intermediate inverse problems
between steps 27-28 for 1-hash.

e The total runtime on them is 14 minutes on 1 CPU core.

Tuning Kissat for MD5

¢ 16 CNFs in the training set: the first 16 intermediate inverse problems
between steps 27-28 for 1-hash.

e The total runtime on them is 14 minutes on 1 CPU core.

e 3 seeds for tuning, each on 16-core CPU during 24 hours.

Tuning Kissat for MD5

¢ 16 CNFs in the training set: the first 16 intermediate inverse problems
between steps 27-28 for 1-hash.

e The total runtime on them is 14 minutes on 1 CPU core.
e 3 seeds for tuning, each on 16-core CPU during 24 hours.

® The best set of parameters’ values: 4 minutes in total (3 times faster).

Tuning Kissat for MD5

Table: The best KISSAT’s configuration found for MD5.

Parameter Default value Found value
chronolevels 100 1 000
decay 50 32
definitionticks 1 000 000 100
eliminatebound 16 2
eliminateocclim 2 000 1 000
emaslow 100 000 75 000
minimizedepth 1 000 100
restartmargin 10 20
shrink 3 0
stable 1 2
substituterounds 2 32
subsumecilslim 1 000 10 000
sweepmaxclauses 4 096 2048

Tuning Kissat for MD5

800004 kissat3_tuned i
—&— kissat3
70000 pr
60000
2 50000
()
£
= 40000
o
O
30000
20000
10000
L
0 .
2 4 6 8 10

instances

Comparison of the default KISSAT with its tuned version on intermediate inverse problems
for steps 28-29 of MD5, 1-hash.

Inverting 29-step MD5

e The lookahead solver march_cu split the inverse problem for 29-step MD5 into
74 470 subformulas.

Inverting 29-step MD5

e The lookahead solver march_cu split the inverse problem for 29-step MD5 into
74 470 subformulas.

¢ The tuned Kissat was run on the subformulas on a supercomputer (540 CPU
cores).

Inverting 29-step MD5

e The lookahead solver march_cu split the inverse problem for 29-step MD5 into
74 470 subformulas.

¢ The tuned Kissat was run on the subformulas on a supercomputer (540 CPU
cores).

¢ A preimage was found in 37 hours.

Table: A preimage of 128 1s produced by 29-step MD5-1.

0xel051la%e 0x48120773 0x996a5457 O0Oxaaald815
0x37d8149c 0x5f999c05 0x182baldb O0Oxdfffle73
Oxc5db0a2f 0x44430b2a 0xa269f5a2 0x69781b85
0x2b7f0939 O0Oxclff3c22 0xc55e990f 0x96ba3fb8

Conclusions

O A new type of intermediate inverse problems for cryptographic hash functions
was proposed.

® A CDCL solver was tuned on intermediate inverse problems for MD5 and
SHA-1.

© 29-step MD5 and 24-step SHA-1 were inverted for the first time via the tuned
solver.

@ In the future, SHA-256 will be studied.

Conclusions

O A new type of intermediate inverse problems for cryptographic hash functions
was proposed.

® A CDCL solver was tuned on intermediate inverse problems for MD5 and
SHA-1.

© 29-step MD5 and 24-step SHA-1 were inverted for the first time via the tuned
solver.

@ In the future, SHA-256 will be studied.

Thank you for your attention! Questions?

