
Inverting Step-reduced SHA-1 and MD5 by Parameterized
SAT Solvers

Oleg Zaikin

ISDCT SB RAS, Russia

CP 2024



Outline

1 Cryptographic hash functions MD5 and SHA-1

2 Intermediate inverse problems for MD5 and SHA-1

3 SAT encoding

4 Solving intermediate inverse problems by Kissat

5 Tuning Kissat

6 Inverting 24-step SHA-1 and 29-step MD5 by parameterized Kissat



Cryptographic hash function

A cryptographic hash function h has the following properties:
1 Compression: h maps a message x of arbitrary finite size to a hash h(x) of

fixed size.



Cryptographic hash function

A cryptographic hash function h has the following properties:
1 Compression: h maps a message x of arbitrary finite size to a hash h(x) of

fixed size.

2 Ease of computation: for any given message x , h(x) is easy to compute.



Cryptographic hash function

A cryptographic hash function h has the following properties:
1 Compression: h maps a message x of arbitrary finite size to a hash h(x) of

fixed size.

2 Ease of computation: for any given message x , h(x) is easy to compute.

3 Preimage resistance: for any given hash y , it is computationally infeasible to
find any of its preimages, i.e. any such message x ′ that h(x ′) = y .



Cryptographic hash function

A cryptographic hash function h has the following properties:
1 Compression: h maps a message x of arbitrary finite size to a hash h(x) of

fixed size.

2 Ease of computation: for any given message x , h(x) is easy to compute.

3 Preimage resistance: for any given hash y , it is computationally infeasible to
find any of its preimages, i.e. any such message x ′ that h(x ′) = y .

4 Second-preimage resistance: for any given message x , it is computationally
infeasible to find x ′ such that x ′ ̸= x , h(x) = h(x ′).



Cryptographic hash function

A cryptographic hash function h has the following properties:
1 Compression: h maps a message x of arbitrary finite size to a hash h(x) of

fixed size.

2 Ease of computation: for any given message x , h(x) is easy to compute.

3 Preimage resistance: for any given hash y , it is computationally infeasible to
find any of its preimages, i.e. any such message x ′ that h(x ′) = y .

4 Second-preimage resistance: for any given message x , it is computationally
infeasible to find x ′ such that x ′ ̸= x , h(x) = h(x ′).

5 Collision resistance: it is computationally infeasible to find any two messages
x and x ′ such that x ̸= x ′, h(x) = h(x ′).



Cryptographic hash function

A cryptographic hash function h has the following properties:
1 Compression: h maps a message x of arbitrary finite size to a hash h(x) of

fixed size.

2 Ease of computation: for any given message x , h(x) is easy to compute.

3 Preimage resistance: for any given hash y , it is computationally infeasible to
find any of its preimages, i.e. any such message x ′ that h(x ′) = y .

4 Second-preimage resistance: for any given message x , it is computationally
infeasible to find x ′ such that x ′ ̸= x , h(x) = h(x ′).

5 Collision resistance: it is computationally infeasible to find any two messages
x and x ′ such that x ̸= x ′, h(x) = h(x ′).

The first two properties are obligatory.



Applications

• Verifying the integrity of messages and files: compare hashes calculated
before and after transmission.

• Password verification: they are not stored as clear text, their hashes are
stored instead.

• Proof-of-work: a mining reward is unlocked after some partial hash
inversions (e.g. in Bitcoin).



Applications

• Verifying the integrity of messages and files: compare hashes calculated
before and after transmission.

• Password verification: they are not stored as clear text, their hashes are
stored instead.

• Proof-of-work: a mining reward is unlocked after some partial hash
inversions (e.g. in Bitcoin).



Applications

• Verifying the integrity of messages and files: compare hashes calculated
before and after transmission.

• Password verification: they are not stored as clear text, their hashes are
stored instead.

• Proof-of-work: a mining reward is unlocked after some partial hash
inversions (e.g. in Bitcoin).



Merkle–Damgard construction

• A method of building cryptographic hash functions from one-way compression
functions.

• Initialization vector (IV) has a fixed value.
• The compression function f takes the result so far, combines it with a

message block, and produces an intermediate result.



Merkle–Damgard construction

• A method of building cryptographic hash functions from one-way compression
functions.

• Initialization vector (IV) has a fixed value.
• The compression function f takes the result so far, combines it with a

message block, and produces an intermediate result.



MD5

• MD5 – a Merkle-Damgard-based
cryptographic hash function
proposed in 1992.



MD5

• MD5 – a Merkle-Damgard-based
cryptographic hash function
proposed in 1992.

• Given a 512-bit message
M = M0, . . . , M15, the compression
function produces a 128-bit hash.



MD5

• MD5 – a Merkle-Damgard-based
cryptographic hash function
proposed in 1992.

• Given a 512-bit message
M = M0, . . . , M15, the compression
function produces a 128-bit hash.

• Data is transformed in four 32-bit
registers A, B, C, D.

One MD5 step1. F is a round function, ≪ is circular
shift, and ⊞ is addition modulo 232.

1https://en.wikipedia.org/wiki/MD5



MD5

• MD5 – a Merkle-Damgard-based
cryptographic hash function
proposed in 1992.

• Given a 512-bit message
M = M0, . . . , M15, the compression
function produces a 128-bit hash.

• Data is transformed in four 32-bit
registers A, B, C, D.

• 64 steps; each step all registers are
updated.

One MD5 step1. F is a round function, ≪ is circular
shift, and ⊞ is addition modulo 232.

1https://en.wikipedia.org/wiki/MD5



MD5

• MD5 – a Merkle-Damgard-based
cryptographic hash function
proposed in 1992.

• Given a 512-bit message
M = M0, . . . , M15, the compression
function produces a 128-bit hash.

• Data is transformed in four 32-bit
registers A, B, C, D.

• 64 steps; each step all registers are
updated.

• Before the 1st step A, B, C, D are IV,
on the last step they are hash. One MD5 step1. F is a round function, ≪ is circular

shift, and ⊞ is addition modulo 232.
1https://en.wikipedia.org/wiki/MD5



SHA-1

• SHA-1 – a Merkle-Damgard-based
cryptographic hash function
proposed in 1995.



SHA-1

• SHA-1 – a Merkle-Damgard-based
cryptographic hash function
proposed in 1995.
• Compared to MD5:

1 160-bit hash.
2 5 registers A, B, C, D, E .
3 80 steps; 4 rounds, 20 steps each.

One SHA-1 step2. F is a round function.

2https://en.wikipedia.org/wiki/SHA-1



MD5 and SHA-1 statuses

• Since 2005, MD5 is not collision resistant.

• Since 2017, SHA-1 is not collision resistant.

• MD5 and SHA-1 are still preimage resistant.

• MD5 and SHA-1 are still used in practice.

• In 2012, the 28-step MD5 and 23-step SHA-1 were inverted (i.e. their
preimages were found) via a SAT solver3.

• Goal: invert 29-step MD5 and 24-step SHA-1 via SAT.

3Florian Legendre et al. Encoding Hash Functions as a SAT Problem // Proc. of ICTAI 2012



MD5 and SHA-1 statuses

• Since 2005, MD5 is not collision resistant.

• Since 2017, SHA-1 is not collision resistant.

• MD5 and SHA-1 are still preimage resistant.

• MD5 and SHA-1 are still used in practice.

• In 2012, the 28-step MD5 and 23-step SHA-1 were inverted (i.e. their
preimages were found) via a SAT solver3.

• Goal: invert 29-step MD5 and 24-step SHA-1 via SAT.

3Florian Legendre et al. Encoding Hash Functions as a SAT Problem // Proc. of ICTAI 2012



MD5 and SHA-1 statuses

• Since 2005, MD5 is not collision resistant.

• Since 2017, SHA-1 is not collision resistant.

• MD5 and SHA-1 are still preimage resistant.

• MD5 and SHA-1 are still used in practice.

• In 2012, the 28-step MD5 and 23-step SHA-1 were inverted (i.e. their
preimages were found) via a SAT solver3.

• Goal: invert 29-step MD5 and 24-step SHA-1 via SAT.

3Florian Legendre et al. Encoding Hash Functions as a SAT Problem // Proc. of ICTAI 2012



MD5 and SHA-1 statuses

• Since 2005, MD5 is not collision resistant.

• Since 2017, SHA-1 is not collision resistant.

• MD5 and SHA-1 are still preimage resistant.

• MD5 and SHA-1 are still used in practice.

• In 2012, the 28-step MD5 and 23-step SHA-1 were inverted (i.e. their
preimages were found) via a SAT solver3.

• Goal: invert 29-step MD5 and 24-step SHA-1 via SAT.

3Florian Legendre et al. Encoding Hash Functions as a SAT Problem // Proc. of ICTAI 2012



Outline

1 Cryptographic hash functions MD5 and SHA-1

2 Intermediate inverse problems for MD5 and SHA-1

3 SAT encoding

4 Solving intermediate inverse problems by Kissat

5 Tuning Kissat

6 Inverting 24-step SHA-1 and 29-step MD5 by parameterized Kissat



Intermediate inverse problems for MD5

The (i + 1)-th step of MD5:
temp ← Func(B, C, D) ⊞ A ⊞ K [i ] ⊞ M[g]
A← D
D ← C
C ← B
B ← B + (temp ≪ s)

Observation: if M[g] is deleted
temp ← Func(B, C, D) ⊞ A ⊞ K [i ]
for a CDCL solver the inverse problem is compared to that for i steps:

Idea: assign constant values to several bits in M[g] in step i + 1 thus forming
a family of intermediate inverse problems between steps i and i + 1.



Intermediate inverse problems for MD5

The (i + 1)-th step of MD5:
temp ← Func(B, C, D) ⊞ A ⊞ K [i ] ⊞ M[g]
A← D
D ← C
C ← B
B ← B + (temp ≪ s)

Observation: if M[g] is deleted
temp ← Func(B, C, D) ⊞ A ⊞ K [i ]
for a CDCL solver the inverse problem is compared to that for i steps:

Idea: assign constant values to several bits in M[g] in step i + 1 thus forming
a family of intermediate inverse problems between steps i and i + 1.



Intermediate inverse problems for MD5

The (i + 1)-th step of MD5:
temp ← Func(B, C, D) ⊞ A ⊞ K [i ] ⊞ M[g]
A← D
D ← C
C ← B
B ← B + (temp ≪ s)

Observation: if M[g] is deleted
temp ← Func(B, C, D) ⊞ A ⊞ K [i ]
for a CDCL solver the inverse problem is compared to that for i steps:

Idea: assign constant values to several bits in M[g] in step i + 1 thus forming
a family of intermediate inverse problems between steps i and i + 1.



Intermediate inverse problems for MD5

• j is varied from 1 to 31 to form 31 intermediate inverse problems.

• weakM is M[g] with 32− j rightmost bits assigned to 0.

• Usually j = 1 is the simplest (close to inverting i steps), while j = 31 is the
hardest (close to inverting i + 1) steps).

A weakened (i + 1)-th step of MD5:
weakM ← (M[g]≫ (32− j))≪ (32− j)
temp ← Func(B, C, D) ⊞ A ⊞ K [i ] ⊞ weakM
A← D
D ← C
C ← B
B ← B + (temp ≪ s)

• The j-th intermediate MD5 function between i and i + 1, is called (i j/32)-step
MD5.



Intermediate inverse problems for MD5

• j is varied from 1 to 31 to form 31 intermediate inverse problems.

• weakM is M[g] with 32− j rightmost bits assigned to 0.

• Usually j = 1 is the simplest (close to inverting i steps), while j = 31 is the
hardest (close to inverting i + 1) steps).

A weakened (i + 1)-th step of MD5:
weakM ← (M[g]≫ (32− j))≪ (32− j)
temp ← Func(B, C, D) ⊞ A ⊞ K [i ] ⊞ weakM
A← D
D ← C
C ← B
B ← B + (temp ≪ s)

• The j-th intermediate MD5 function between i and i + 1, is called (i j/32)-step
MD5.



Intermediate inverse problems for MD5

• j is varied from 1 to 31 to form 31 intermediate inverse problems.

• weakM is M[g] with 32− j rightmost bits assigned to 0.

• Usually j = 1 is the simplest (close to inverting i steps), while j = 31 is the
hardest (close to inverting i + 1) steps).

A weakened (i + 1)-th step of MD5:
weakM ← (M[g]≫ (32− j))≪ (32− j)
temp ← Func(B, C, D) ⊞ A ⊞ K [i ] ⊞ weakM
A← D
D ← C
C ← B
B ← B + (temp ≪ s)

• The j-th intermediate MD5 function between i and i + 1, is called (i j/32)-step
MD5.



Intermediate inverse problems for MD5

• j is varied from 1 to 31 to form 31 intermediate inverse problems.

• weakM is M[g] with 32− j rightmost bits assigned to 0.

• Usually j = 1 is the simplest (close to inverting i steps), while j = 31 is the
hardest (close to inverting i + 1) steps).

A weakened (i + 1)-th step of MD5:
weakM ← (M[g]≫ (32− j))≪ (32− j)
temp ← Func(B, C, D) ⊞ A ⊞ K [i ] ⊞ weakM
A← D
D ← C
C ← B
B ← B + (temp ≪ s)

• The j-th intermediate MD5 function between i and i + 1, is called (i j/32)-step
MD5.



Intermediate inverse problems for MD5

• j is varied from 1 to 31 to form 31 intermediate inverse problems.

• weakM is M[g] with 32− j rightmost bits assigned to 0.

• Usually j = 1 is the simplest (close to inverting i steps), while j = 31 is the
hardest (close to inverting i + 1) steps).

A weakened (i + 1)-th step of MD5:
weakM ← (M[g]≫ (32− j))≪ (32− j)
temp ← Func(B, C, D) ⊞ A ⊞ K [i ] ⊞ weakM
A← D
D ← C
C ← B
B ← B + (temp ≪ s)

• The j-th intermediate MD5 function between i and i + 1, is called (i j/32)-step
MD5.



Intermediate inverse problems for SHA-1

• The main hardness lies in M[g] as well.

• 31 intermediate inverse problems are formed in the same way as for MD5.



Outline

1 Cryptographic hash functions MD5 and SHA-1

2 Intermediate inverse problems for MD5 and SHA-1

3 SAT encoding

4 Solving intermediate inverse problems by Kissat

5 Tuning Kissat

6 Inverting 24-step SHA-1 and 29-step MD5 by parameterized Kissat



Basic SAT encoding

• The best SAT encoding for SHA-1 so far is Vegard Nossum’s encoding4.

• Compared to the competitors, it produces more compact CNFs which are
easier for CDCL solvers.

• The main novelty:addition modulo 232 is expressed as a logic gate circuit and
encoded in the clausal form using the ESPRESSO minimizer.

• An implementation is available online5.

• In the present study, the implementation is extended to maintain MD5.

4Vegard Nossum. SAT-based preimage attacks on SHA-1. Master’s thesis, University of Oslo,
Department of Informatics, 2012.

5https://github.com/vegard/sha1-sat

https://github.com/vegard/sha1-sat


Basic SAT encoding

• The best SAT encoding for SHA-1 so far is Vegard Nossum’s encoding4.

• Compared to the competitors, it produces more compact CNFs which are
easier for CDCL solvers.

• The main novelty:addition modulo 232 is expressed as a logic gate circuit and
encoded in the clausal form using the ESPRESSO minimizer.

• An implementation is available online5.

• In the present study, the implementation is extended to maintain MD5.

4Vegard Nossum. SAT-based preimage attacks on SHA-1. Master’s thesis, University of Oslo,
Department of Informatics, 2012.

5https://github.com/vegard/sha1-sat

https://github.com/vegard/sha1-sat


Basic SAT encoding

• The best SAT encoding for SHA-1 so far is Vegard Nossum’s encoding4.

• Compared to the competitors, it produces more compact CNFs which are
easier for CDCL solvers.

• The main novelty:addition modulo 232 is expressed as a logic gate circuit and
encoded in the clausal form using the ESPRESSO minimizer.

• An implementation is available online5.

• In the present study, the implementation is extended to maintain MD5.

4Vegard Nossum. SAT-based preimage attacks on SHA-1. Master’s thesis, University of Oslo,
Department of Informatics, 2012.

5https://github.com/vegard/sha1-sat

https://github.com/vegard/sha1-sat


Basic SAT encoding

• The best SAT encoding for SHA-1 so far is Vegard Nossum’s encoding4.

• Compared to the competitors, it produces more compact CNFs which are
easier for CDCL solvers.

• The main novelty:addition modulo 232 is expressed as a logic gate circuit and
encoded in the clausal form using the ESPRESSO minimizer.

• An implementation is available online5.

• In the present study, the implementation is extended to maintain MD5.

4Vegard Nossum. SAT-based preimage attacks on SHA-1. Master’s thesis, University of Oslo,
Department of Informatics, 2012.

5https://github.com/vegard/sha1-sat

https://github.com/vegard/sha1-sat


Basic SAT encoding

• The best SAT encoding for SHA-1 so far is Vegard Nossum’s encoding4.

• Compared to the competitors, it produces more compact CNFs which are
easier for CDCL solvers.

• The main novelty:addition modulo 232 is expressed as a logic gate circuit and
encoded in the clausal form using the ESPRESSO minimizer.

• An implementation is available online5.

• In the present study, the implementation is extended to maintain MD5.

4Vegard Nossum. SAT-based preimage attacks on SHA-1. Master’s thesis, University of Oslo,
Department of Informatics, 2012.

5https://github.com/vegard/sha1-sat

https://github.com/vegard/sha1-sat


SAT encoding of intermediate inverse problems

• One cannot assign 0 to 32− j M[g]’s bits directly in the CNF since in all
previous steps M[g] is used as usual.

• To encode the j-th intermediate inverse problem between steps i and i + 1:
1 32-bit word weakM is introduced in the form of 32 Boolean variables.
2 The rightmost 32− j bits of weakM are assigned to 0 via adding unit clauses.
3 The equality conditions for the leftmost j bits of weakM and the corresponding j

bits of M[g] are added in the form of j × 2 binary clauses.
4 32 variables of weakW are used instead of M[g]’s variables in step i + 1.

Table: Characteristics of CNFs.

Hash Steps Variables Clauses Literals
SHA-1 23 4 288 132 672 873 727
SHA-1 23 16/32 4 480 138 812 913 700
SHA-1 24 4 448 138 764 913 620



SAT encoding of intermediate inverse problems

• One cannot assign 0 to 32− j M[g]’s bits directly in the CNF since in all
previous steps M[g] is used as usual.
• To encode the j-th intermediate inverse problem between steps i and i + 1:

1 32-bit word weakM is introduced in the form of 32 Boolean variables.
2 The rightmost 32− j bits of weakM are assigned to 0 via adding unit clauses.
3 The equality conditions for the leftmost j bits of weakM and the corresponding j

bits of M[g] are added in the form of j × 2 binary clauses.
4 32 variables of weakW are used instead of M[g]’s variables in step i + 1.

Table: Characteristics of CNFs.

Hash Steps Variables Clauses Literals
SHA-1 23 4 288 132 672 873 727
SHA-1 23 16/32 4 480 138 812 913 700
SHA-1 24 4 448 138 764 913 620



SAT encoding of intermediate inverse problems

• One cannot assign 0 to 32− j M[g]’s bits directly in the CNF since in all
previous steps M[g] is used as usual.
• To encode the j-th intermediate inverse problem between steps i and i + 1:

1 32-bit word weakM is introduced in the form of 32 Boolean variables.
2 The rightmost 32− j bits of weakM are assigned to 0 via adding unit clauses.
3 The equality conditions for the leftmost j bits of weakM and the corresponding j

bits of M[g] are added in the form of j × 2 binary clauses.
4 32 variables of weakW are used instead of M[g]’s variables in step i + 1.

Table: Characteristics of CNFs.

Hash Steps Variables Clauses Literals
SHA-1 23 4 288 132 672 873 727
SHA-1 23 16/32 4 480 138 812 913 700
SHA-1 24 4 448 138 764 913 620



Outline

1 Cryptographic hash functions MD5 and SHA-1

2 Intermediate inverse problems for MD5 and SHA-1

3 SAT encoding

4 Solving intermediate inverse problems by Kissat

5 Tuning Kissat

6 Inverting 24-step SHA-1 and 29-step MD5 by parameterized Kissat



Solving intermediate inverse problems by Kissat

• A state-of-the-art CDCL solver Kissat6 of version 3.0 is used.

• 33 inverse problems were considered for SHA-1: 22 steps, 31 intermediate
problems between steps 22 and 23, and 23 steps.

• For each inverse problem, 10 SAT instances were generated: all 1s hash
(1hash), all 0s hash, and 8 random hashes.

• PC with 16-core CPU.

• Time limit 24 hours.

6Armin Biere and Mathias Fleury. Gimsatul, IsaSAT and Kissat entering the SAT Competition
2022. In Proc. of SAT Competition 2022.



Solving intermediate inverse problems by Kissat

• A state-of-the-art CDCL solver Kissat6 of version 3.0 is used.

• 33 inverse problems were considered for SHA-1: 22 steps, 31 intermediate
problems between steps 22 and 23, and 23 steps.

• For each inverse problem, 10 SAT instances were generated: all 1s hash
(1hash), all 0s hash, and 8 random hashes.

• PC with 16-core CPU.

• Time limit 24 hours.

6Armin Biere and Mathias Fleury. Gimsatul, IsaSAT and Kissat entering the SAT Competition
2022. In Proc. of SAT Competition 2022.



Solving intermediate inverse problems by Kissat

• A state-of-the-art CDCL solver Kissat6 of version 3.0 is used.

• 33 inverse problems were considered for SHA-1: 22 steps, 31 intermediate
problems between steps 22 and 23, and 23 steps.

• For each inverse problem, 10 SAT instances were generated: all 1s hash
(1hash), all 0s hash, and 8 random hashes.

• PC with 16-core CPU.

• Time limit 24 hours.

6Armin Biere and Mathias Fleury. Gimsatul, IsaSAT and Kissat entering the SAT Competition
2022. In Proc. of SAT Competition 2022.



Solving intermediate inverse problems by Kissat

• A state-of-the-art CDCL solver Kissat6 of version 3.0 is used.

• 33 inverse problems were considered for SHA-1: 22 steps, 31 intermediate
problems between steps 22 and 23, and 23 steps.

• For each inverse problem, 10 SAT instances were generated: all 1s hash
(1hash), all 0s hash, and 8 random hashes.

• PC with 16-core CPU.

• Time limit 24 hours.

6Armin Biere and Mathias Fleury. Gimsatul, IsaSAT and Kissat entering the SAT Competition
2022. In Proc. of SAT Competition 2022.



Solving intermediate inverse problems by Kissat

• A state-of-the-art CDCL solver Kissat6 of version 3.0 is used.

• 33 inverse problems were considered for SHA-1: 22 steps, 31 intermediate
problems between steps 22 and 23, and 23 steps.

• For each inverse problem, 10 SAT instances were generated: all 1s hash
(1hash), all 0s hash, and 8 random hashes.

• PC with 16-core CPU.

• Time limit 24 hours.

6Armin Biere and Mathias Fleury. Gimsatul, IsaSAT and Kissat entering the SAT Competition
2022. In Proc. of SAT Competition 2022.



Boxplots for SHA-1

22

22
 2

/3
2

22
 4

/3
2

22
 6

/3
2

22
 8

/3
2

22
 1

0/
32

22
 1

2/
32

22
 1

4/
32

22
 1

6/
32

22
 1

8/
32

22
 2

0/
32

22
 2

2/
32

22
 2

4/
32

22
 2

6/
32

22
 2

8/
32

22
 3

0/
32 23

Steps

2 min

10 min

1 h

5 h

24 h
CP

U 
tim

e 
(lo

ga
rit

hm
ic 

sc
al

e)



Boxplots for MD5

27

27
 2

/3
2

27
 4

/3
2

27
 6

/3
2

27
 8

/3
2

27
 1

0/
32

27
 1

2/
32

27
 1

4/
32

27
 1

6/
32

27
 1

8/
32

27
 2

0/
32

27
 2

2/
32

27
 2

4/
32

27
 2

6/
32

27
 2

8/
32

27
 3

0/
32 28

Steps

1 sec

10 sec

2 min

30 min

12 h
CP

U 
tim

e 
(lo

ga
rit

hm
ic 

sc
al

e)



Outline

1 Cryptographic hash functions MD5 and SHA-1

2 Intermediate inverse problems for MD5 and SHA-1

3 SAT encoding

4 Solving intermediate inverse problems by Kissat

5 Tuning Kissat

6 Inverting 24-step SHA-1 and 29-step MD5 by parameterized Kissat



Tuning a CDCL solver on intermediate inverse problems

• Kissat has 90 integer parameters.

• Kissat can be tuned — one can find a set of parameters’ values that
minimizes Kissat’s total runtime (or PAR2) on a set of SAT instances.

• Problem: the number of values varies from 2 to millions, so it is infeasible to
try all possible sets of parameters’ values.

• Solution: a metaheuristic algorithm tunes the solver without checking all sets.

• Idea: to invert i + 1 steps, tune Kissat on intermediate inverse problems
between steps i and i + 1.



Tuning a CDCL solver on intermediate inverse problems

• Kissat has 90 integer parameters.

• Kissat can be tuned — one can find a set of parameters’ values that
minimizes Kissat’s total runtime (or PAR2) on a set of SAT instances.

• Problem: the number of values varies from 2 to millions, so it is infeasible to
try all possible sets of parameters’ values.

• Solution: a metaheuristic algorithm tunes the solver without checking all sets.

• Idea: to invert i + 1 steps, tune Kissat on intermediate inverse problems
between steps i and i + 1.



Tuning a CDCL solver on intermediate inverse problems

• Kissat has 90 integer parameters.

• Kissat can be tuned — one can find a set of parameters’ values that
minimizes Kissat’s total runtime (or PAR2) on a set of SAT instances.

• Problem: the number of values varies from 2 to millions, so it is infeasible to
try all possible sets of parameters’ values.

• Solution: a metaheuristic algorithm tunes the solver without checking all sets.

• Idea: to invert i + 1 steps, tune Kissat on intermediate inverse problems
between steps i and i + 1.



Tuning a CDCL solver on intermediate inverse problems

• Kissat has 90 integer parameters.

• Kissat can be tuned — one can find a set of parameters’ values that
minimizes Kissat’s total runtime (or PAR2) on a set of SAT instances.

• Problem: the number of values varies from 2 to millions, so it is infeasible to
try all possible sets of parameters’ values.

• Solution: a metaheuristic algorithm tunes the solver without checking all sets.

• Idea: to invert i + 1 steps, tune Kissat on intermediate inverse problems
between steps i and i + 1.



Tuning a CDCL solver on intermediate inverse problems

• Kissat has 90 integer parameters.

• Kissat can be tuned — one can find a set of parameters’ values that
minimizes Kissat’s total runtime (or PAR2) on a set of SAT instances.

• Problem: the number of values varies from 2 to millions, so it is infeasible to
try all possible sets of parameters’ values.

• Solution: a metaheuristic algorithm tunes the solver without checking all sets.

• Idea: to invert i + 1 steps, tune Kissat on intermediate inverse problems
between steps i and i + 1.



Tuning a CDCL solver on intermediate inverse problems

• Implementations of metaheuristic algorithms: SMAC3, PyDGGA.

• (1+1)-EA (Evolutionary Algorithm) was chosen for tuning because of its
simplicity.

1 Consider n parameters.
2 New set of values: the value of each parameter is changed with probability 1/n.
3 Any value can be assigned, but with high probability it will be the closest to the

current one.



Tuning a CDCL solver on intermediate inverse problems

• Implementations of metaheuristic algorithms: SMAC3, PyDGGA.
• (1+1)-EA (Evolutionary Algorithm) was chosen for tuning because of its

simplicity.

1 Consider n parameters.
2 New set of values: the value of each parameter is changed with probability 1/n.
3 Any value can be assigned, but with high probability it will be the closest to the

current one.



Tuning a CDCL solver on intermediate inverse problems

• Implementations of metaheuristic algorithms: SMAC3, PyDGGA.
• (1+1)-EA (Evolutionary Algorithm) was chosen for tuning because of its

simplicity.
1 Consider n parameters.
2 New set of values: the value of each parameter is changed with probability 1/n.
3 Any value can be assigned, but with high probability it will be the closest to the

current one.



Outline

1 Cryptographic hash functions MD5 and SHA-1

2 Intermediate inverse problems for MD5 and SHA-1

3 SAT encoding

4 Solving intermediate inverse problems by Kissat

5 Tuning Kissat

6 Inverting 24-step SHA-1 and 29-step MD5 by parameterized Kissat



Tuning Kissat for SHA-1

• 16 CNFs in the training set: the last 15 intermediate inverse problems
between steps 21-22 and inverting 22-step SHA-1, all for 1-hash.

• The total runtime on them is 1 hour 58 minutes on 1 CPU core.

• 3 seeds for tuning, each on 16-core CPU during 24 hours.

• The best set of parameters’ values: 22 minutes in total (5 times faster).



Tuning Kissat for SHA-1

• 16 CNFs in the training set: the last 15 intermediate inverse problems
between steps 21-22 and inverting 22-step SHA-1, all for 1-hash.

• The total runtime on them is 1 hour 58 minutes on 1 CPU core.

• 3 seeds for tuning, each on 16-core CPU during 24 hours.

• The best set of parameters’ values: 22 minutes in total (5 times faster).



Tuning Kissat for SHA-1

• 16 CNFs in the training set: the last 15 intermediate inverse problems
between steps 21-22 and inverting 22-step SHA-1, all for 1-hash.

• The total runtime on them is 1 hour 58 minutes on 1 CPU core.

• 3 seeds for tuning, each on 16-core CPU during 24 hours.

• The best set of parameters’ values: 22 minutes in total (5 times faster).



Tuning Kissat for SHA-1

• 16 CNFs in the training set: the last 15 intermediate inverse problems
between steps 21-22 and inverting 22-step SHA-1, all for 1-hash.

• The total runtime on them is 1 hour 58 minutes on 1 CPU core.

• 3 seeds for tuning, each on 16-core CPU during 24 hours.

• The best set of parameters’ values: 22 minutes in total (5 times faster).



Tuning Kissat for SHA-1

Table: The best KISSAT’s configuration found for SHA-1.

Parameter Default value Found value
backbonerounds 100 10
definitionticks 1 000 000 100
eliminatebound 16 32
eliminateclslim 100 10
emafast 33 10
minimizedepth 1 000 100
restartmargin 10 20
stable 1 2
sweepfliprounds 1 5
sweepmaxclauses 4 096 2 147 483 647
sweepvars 128 64
vivifytier1 3 2



Tuning Kissat for SHA-1

5 10 15 20 25 30 35 40
instances

0

10000

20000

30000

40000

50000

60000

70000

80000

CP
U 

tim
e 

(s
)

kissat3_tuned
kissat3

Comparison of the default KISSAT with its tuned version on intermediate inverse problems
for steps 22-24 of SHA-1, 1-hash.



Inverting 24-step SHA-1

• The Cube-and-Conquer method was applied: a given formula is split via
lookahead into a family of simpler subformulas, which are solved by a CDCL
solver7.

• The lookahead solver march cu split the inverse problem for 24-step SHA-1
into 166 subformulas.

• The tuned Kissat was run on the subformulas on a supercomputer (166 CPU
cores). A preimage was found in 23 hours.

Table: A preimage of 160 1s produced by 24-step SHA-1.

0xa6c5c463 0x182655e0 0x2c5ba5f0 0xe0028033
0x8c3779b1 0x98635880 0xc5b822e 0x297efce7
0x59987038 0xd764eca9 0x7ed9801d 0xdde4f1e0
0x524e678 0xa8ce47dc 0xa813fd76 0x8b58e09f

7Marijn Heule et al. Cube and Conquer: Guiding CDCL SAT Solvers by Lookaheads // HVC 2011.



Inverting 24-step SHA-1

• The Cube-and-Conquer method was applied: a given formula is split via
lookahead into a family of simpler subformulas, which are solved by a CDCL
solver7.

• The lookahead solver march cu split the inverse problem for 24-step SHA-1
into 166 subformulas.

• The tuned Kissat was run on the subformulas on a supercomputer (166 CPU
cores). A preimage was found in 23 hours.

Table: A preimage of 160 1s produced by 24-step SHA-1.

0xa6c5c463 0x182655e0 0x2c5ba5f0 0xe0028033
0x8c3779b1 0x98635880 0xc5b822e 0x297efce7
0x59987038 0xd764eca9 0x7ed9801d 0xdde4f1e0
0x524e678 0xa8ce47dc 0xa813fd76 0x8b58e09f

7Marijn Heule et al. Cube and Conquer: Guiding CDCL SAT Solvers by Lookaheads // HVC 2011.



Inverting 24-step SHA-1

• The Cube-and-Conquer method was applied: a given formula is split via
lookahead into a family of simpler subformulas, which are solved by a CDCL
solver7.

• The lookahead solver march cu split the inverse problem for 24-step SHA-1
into 166 subformulas.

• The tuned Kissat was run on the subformulas on a supercomputer (166 CPU
cores). A preimage was found in 23 hours.

Table: A preimage of 160 1s produced by 24-step SHA-1.

0xa6c5c463 0x182655e0 0x2c5ba5f0 0xe0028033
0x8c3779b1 0x98635880 0xc5b822e 0x297efce7
0x59987038 0xd764eca9 0x7ed9801d 0xdde4f1e0
0x524e678 0xa8ce47dc 0xa813fd76 0x8b58e09f

7Marijn Heule et al. Cube and Conquer: Guiding CDCL SAT Solvers by Lookaheads // HVC 2011.



Tuning Kissat for MD5

• 16 CNFs in the training set: the first 16 intermediate inverse problems
between steps 27-28 for 1-hash.

• The total runtime on them is 14 minutes on 1 CPU core.

• 3 seeds for tuning, each on 16-core CPU during 24 hours.

• The best set of parameters’ values: 4 minutes in total (3 times faster).



Tuning Kissat for MD5

• 16 CNFs in the training set: the first 16 intermediate inverse problems
between steps 27-28 for 1-hash.

• The total runtime on them is 14 minutes on 1 CPU core.

• 3 seeds for tuning, each on 16-core CPU during 24 hours.

• The best set of parameters’ values: 4 minutes in total (3 times faster).



Tuning Kissat for MD5

• 16 CNFs in the training set: the first 16 intermediate inverse problems
between steps 27-28 for 1-hash.

• The total runtime on them is 14 minutes on 1 CPU core.

• 3 seeds for tuning, each on 16-core CPU during 24 hours.

• The best set of parameters’ values: 4 minutes in total (3 times faster).



Tuning Kissat for MD5

• 16 CNFs in the training set: the first 16 intermediate inverse problems
between steps 27-28 for 1-hash.

• The total runtime on them is 14 minutes on 1 CPU core.

• 3 seeds for tuning, each on 16-core CPU during 24 hours.

• The best set of parameters’ values: 4 minutes in total (3 times faster).



Tuning Kissat for MD5

Table: The best KISSAT’s configuration found for MD5.

Parameter Default value Found value
chronolevels 100 1 000
decay 50 32
definitionticks 1 000 000 100
eliminatebound 16 2
eliminateocclim 2 000 1 000
emaslow 100 000 75 000
minimizedepth 1 000 100
restartmargin 10 20
shrink 3 0
stable 1 2
substituterounds 2 32
subsumeclslim 1 000 10 000
sweepmaxclauses 4 096 2 048
target 1 2
tier2 6 10
vivifytier2 6 5



Tuning Kissat for MD5

2 4 6 8 10
instances

0

10000

20000

30000

40000

50000

60000

70000

80000

CP
U 

tim
e 

(s
)

kissat3_tuned
kissat3

Comparison of the default KISSAT with its tuned version on intermediate inverse problems
for steps 28-29 of MD5, 1-hash.



Inverting 29-step MD5

• The lookahead solver march cu split the inverse problem for 29-step MD5 into
74 470 subformulas.

• The tuned Kissat was run on the subformulas on a supercomputer (540 CPU
cores).

• A preimage was found in 37 hours.

Table: A preimage of 128 1s produced by 29-step MD5-1.

0xe1051a9e 0x48120773 0x996a5457 0xaaa1d815
0x37d8149c 0x5f999c05 0x182ba14b 0xdfff1673
0xc5db0a2f 0x44430b2a 0xa269f5a2 0x69781b85
0x2b7f0939 0xc1ff3c22 0xc55e990f 0x96ba3fb8



Inverting 29-step MD5

• The lookahead solver march cu split the inverse problem for 29-step MD5 into
74 470 subformulas.

• The tuned Kissat was run on the subformulas on a supercomputer (540 CPU
cores).

• A preimage was found in 37 hours.

Table: A preimage of 128 1s produced by 29-step MD5-1.

0xe1051a9e 0x48120773 0x996a5457 0xaaa1d815
0x37d8149c 0x5f999c05 0x182ba14b 0xdfff1673
0xc5db0a2f 0x44430b2a 0xa269f5a2 0x69781b85
0x2b7f0939 0xc1ff3c22 0xc55e990f 0x96ba3fb8



Inverting 29-step MD5

• The lookahead solver march cu split the inverse problem for 29-step MD5 into
74 470 subformulas.

• The tuned Kissat was run on the subformulas on a supercomputer (540 CPU
cores).

• A preimage was found in 37 hours.

Table: A preimage of 128 1s produced by 29-step MD5-1.

0xe1051a9e 0x48120773 0x996a5457 0xaaa1d815
0x37d8149c 0x5f999c05 0x182ba14b 0xdfff1673
0xc5db0a2f 0x44430b2a 0xa269f5a2 0x69781b85
0x2b7f0939 0xc1ff3c22 0xc55e990f 0x96ba3fb8



Conclusions

1 A new type of intermediate inverse problems for cryptographic hash functions
was proposed.

2 A CDCL solver was tuned on intermediate inverse problems for MD5 and
SHA-1.

3 29-step MD5 and 24-step SHA-1 were inverted for the first time via the tuned
solver.

4 In the future, SHA-256 will be studied.

Thank you for your attention! Questions?



Conclusions

1 A new type of intermediate inverse problems for cryptographic hash functions
was proposed.

2 A CDCL solver was tuned on intermediate inverse problems for MD5 and
SHA-1.

3 29-step MD5 and 24-step SHA-1 were inverted for the first time via the tuned
solver.

4 In the future, SHA-256 will be studied.

Thank you for your attention! Questions?


