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Introduction

Improved Filtering for 
Weighted Circuit Constraints, 
(Benchimol P, van Hoeve WJ, Régin J-C, 
Rousseau L-M, Rueher R, 2012, Constraints 
17:3, 205-233.)

● WeightedCircuit constraint: 1-tree 
relaxation for domain filtering and 
application to a Branch-and-Bound 
solver

● Objective: improving the 1-tree 
relaxation for the BnB solver

2



Plan

1. 1-tree and Held-Karp Relaxation

2. Proposed Approach

3. Application and Results



Plan

1. 1-tree and Held-Karp Relaxation

2. Proposed Approach

3. Application and Results



Introduction: Travelling Salesman Problem (TSP)

5



Introduction: Travelling Salesman Problem (TSP)

6

1. Minimize total tour cost



Introduction: Travelling Salesman Problem (TSP)

7

1. Minimize total tour cost

2. Each node is connected 

by 2 edges



Introduction: Travelling Salesman Problem (TSP)

8

1. Minimize total tour cost

2. Each node is connected 

by 2 edges

3. The tour has the right 

length



Introduction: Travelling Salesman Problem (TSP)
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1. Minimize total tour cost

2. Each node is connected 

by 2 edges

3. The tour has the right 

length

4. No disconnected 

subtour is created



1-tree Relaxation

● A minimum 1-tree T is a minimum spanning tree on G\{1}, to 

which {1} is connected back to T with 2 cheapest edges
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1-tree Relaxation

● A 1-tree is effectively the result of the relaxation of the 

degree constraints in the TSP model
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1-tree Relaxation

● A tour is a 1-tree, and finding a minimum 1-tree is fast: dual 

bound generation
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Held-Karp Relaxation

● The 1-tree can be tightened by Lagrangean relaxation, 

where 𝛌 penalizes the node degree violation
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Held-Karp Relaxation

● This is equivalent to modifying the edge costs
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Held-Karp Relaxation

● If T is a tour, then LB = TSP value, else

● Iterative factors update for bound tightening: 
a. positive for degrees > 2 to discourage selected edges, 

b. negative for degrees = 1,

c. 0 for degrees = 2
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Held-Karp Relaxation

● Adding factors on the nodes modifies the minimum 1-tree 

but not the optimal tour
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Held-Karp Relaxation

● Adding factors on the nodes modifies the minimum 1-tree 

but not the optimal tour
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Held-Karp Relaxation
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Proposed Approach

● Predicting the Lagrangian 
Multipliers to kickstart the 
Lagrangian relaxation

● Leverage the graph structure of the 
TSP by using graph neural networks 
(GNN) for the multipliers inference

25
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Graph Neural Networks

● Graph Neural Networks (GNNs) 
process graph-structured data:

○ Node Representation: 
GNNs learn to represent 
nodes based on their 
features and their neighbors’

○ Message Passing: Iterative 
process where nodes update 
their states by exchanging 
information with adjacent 
nodes
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Graph Neural Networks

● GNNs for TSP:

○ TSP graph structure: GNNs 
handle the features and 
variable size of TSP 
representations 

○ Multipliers generation: 
GNNs capture complex 
dependencies and patterns 
in the graph, aiding in better 
optimization
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Learning Approach

● Self-supervised Learning for the prediction of Lagrangian Multipliers:

○ A GNN with parameters       is used to predict Lagrangian multipliers,

○ the GNN is trained by computing the gradient on the bound
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Learning Approach
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multipliers bound
GNN(  )

GNN backprop

HK multipliers 
update



Held-Karp multipliers update
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HK multipliers 
update

Held-Karp relaxation
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Training - Datasets

35

● Dataset randomly generated: Random, Clustered in sizes 

100 and 200

● Existing dataset: Hard

● Training set: TSP instances + branch-and-bound subgraphs

● Features: distances and BnB state on edges, average/min 

distances on nodes



Training - Model and Baselines
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● Baselines: 

• Optimal Solution, 

• HK Relaxation, 

• Supervised (graph attention network + fully-connected NN)

● Trained model: 

• Self-Supervised (graph attention network + fully-connected NN)



Training
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HK bound
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Integration with Branch-and-Bound

●       provides a tight bound at each step of a 

BnB algorithm, enabling pruning and filtering

● Domain filtering: edges are forced or excluded from the 

solution based on replacement or insertion costs based on 

the 1-tree

Benchimol P, van Hoeve WJ, Régin J-C, Rousseau L-M, Rueher R, (2012), 
Improved Filtering for Weighted Circuit Constraints, Constraints 17:3, 205-233.
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Integration with Branch-and-Bound

Practical considerations:

1. Edges forced or excluded from the solution modify the 

graph, which is reflected in the features

2. GNN-based multipliers generation is used in the 10 first 

nodes of the BnB

3. HK+GNN: the trained GNN is used to bootstrap the 

multipliers generation
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Experimental Results

● Compared to a BnB using HK alone, HK+GNN multiplier generation:

○ is 10% quicker in solving instances to optimality

○ reduces by 50% the optimality gap on timeout instances

40
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Conclusion

● Introduction of a self-supervised learning approach using 

GNNs and Held-Karp Lagrangian relaxation to predict 

accurate Lagrangian multipliers

● The approach has potential applications for more 

challenging TSP variants, and other Lagrangian relaxations

● Limitations: costly GNN calls, best results when the graph 

distribution is known beforehand
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Learning Lagrangian Multipliers for the TSP

Thanks!
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