

Learning Lagrangian Multipliers for the Travelling Salesman Problem

Augustin Parjadis, Quentin Cappart, Bistra Dilkina, Aaron Ferber, Louis-Martin Rousseau

Introduction

Improved Filtering for Weighted Circuit Constraints,

(Benchimol P, van Hoeve WJ, Régin J-C, Rousseau L-M, Rueher R, 2012, *Constraints* 17:3, 205-233.)

- WeightedCircuit constraint: 1-tree relaxation for domain filtering and application to a Branch-and-Bound solver
- **Objective**: improving the 1-tree relaxation for the BnB solver

1. 1-tree and Held-Karp Relaxation

- 2. Proposed Approach
- 3. Application and Results

1. 1-tree and Held-Karp Relaxation

2. Proposed Approach

3. Application and Results

$$\begin{split} \min \sum_{e \in E} c_e x_e \\ \text{s. t. } \sum_{e \in \delta(v)} x_e &= 2, \ \forall v \in V \\ \sum_{e \in E} x_e &= |V| \\ \sum_{e \in S} x_e \leq |S| - 1, \ \forall S \text{ subtour of } G \\ x_e \in \{0, 1\}, \ \forall e \in E \end{split}$$

$$\begin{split} \min \sum_{e \in E} c_e x_e \\ \text{s. t.} & \sum_{e \in \delta(v)} x_e = 2, \ \forall v \in V \\ & \sum_{e \in E} x_e = |V| \\ & \sum_{e \in S} x_e \leq |S| - 1, \ \forall S \text{ subtour of } G \\ & x_e \in \{0, 1\}, \ \forall e \in E \end{split}$$

Minimize total tour cost

1.

G

$$\begin{split} \min \sum_{e \in E} c_e x_e \\ \text{s. t. } \sum_{e \in \delta(v)} x_e &= 2, \ \forall v \in V \\ \sum_{e \in E} x_e &= |V| \\ \sum_{e \in S} x_e \leq |S| - 1, \ \forall S \text{ subtour of} \\ x_e \in \{0, 1\}, \ \forall e \in E \end{split}$$

- 1. Minimize total tour cost
- Each node is connected by 2 edges

$$egin{aligned} \min \sum_{e \in E} c_e x_e \ \mathrm{s. t. } \sum_{e \in \delta(v)} x_e &= 2, \ orall v \in V \ \sum_{e \in E} x_e &= |V| \ \sum_{e \in S} x_e \leq |S| - 1, \ orall S \ \mathrm{subtour \ of} \ G \ x_e \in \{0,1\}, \ orall e \in E \end{aligned}$$

- 1. Minimize total tour cost
- Each node is connected by 2 edges
- The tour has the right length

$$\begin{split} \min \sum_{e \in E} c_e x_e \\ \text{s. t. } \sum_{e \in \delta(v)} x_e &= 2, \ \forall v \in V \\ \sum_{e \in E} x_e &= |V| \\ \sum_{e \in S} x_e \leq |S| - 1, \ \forall S \text{ subtour of } G \\ x_e \in \{0, 1\}, \ \forall e \in E \end{split}$$

- 1. Minimize total tour cost
- Each node is connected by 2 edges
- The tour has the right length
- 4. No disconnected subtour is created

 A minimum 1-tree T is a minimum spanning tree on G\{1}, to which {1} is connected back to T with 2 cheapest edges

 A minimum 1-tree T is a minimum spanning tree on G\{1}, to which {1} is connected back to T with 2 cheapest edges

• A minimum *1-tree* T is a minimum spanning tree on G\{1}, to which {1} is connected back to T with 2 cheapest edges

• A minimum *1-tree* T is a minimum spanning tree on G\{1}, to which {1} is connected back to T with 2 cheapest edges

• A 1-tree is effectively the result of the **relaxation of the degree constraints** in the TSP model

$$\begin{split} \min \sum_{e \in E} c_e x_e \\ \text{s. t. } \sum_{e \in \delta(v)} x_e &= 2, \forall v \in V \\ \sum_{e \in E} x_e &= |V| \\ \sum_{e \in S} x_e &\leq |S| - 1, \forall S \text{ subtour of } G \\ x_e &\in \{0, 1\}, \forall e \in E \end{split}$$

A tour is a 1-tree, and finding a minimum 1-tree is fast: dual bound generation

- The 1-tree can be tightened by Lagrangean relaxation, where $\pmb{\lambda}$ penalizes the node degree violation

$$\min \sum_{e \in E} c_e x_e$$

$$\text{s. t. } \underbrace{\sum_{e \in \delta(v)} x_e = 2, \forall v \in V}_{e \in E}$$

$$\min \sum_{e \in E} c_e x_e + \sum_{i \in V} \lambda_i \left(\sum_{e \in \delta(i)} x_e - 2\right)$$

$$\sum_{e \in E} x_e = |V|$$

$$\sum_{e \in E} x_e \leq |S| - 1, \forall S \text{ subtour of } G$$

$$x_e \in \{0, 1\}, \forall e \in E$$

$$\min \sum_{e \in S} c_e x_e + \sum_{i \in V} \lambda_i \left(\sum_{e \in \delta(i)} x_e - 2\right)$$

$$\sum_{e \in S} x_e \leq |V|$$

$$\sum_{e \in S} x_e \leq |S| - 1, \forall S \text{ subtour of } G$$

$$x_e \in \{0, 1\}, \forall e \in E$$

• This is equivalent to modifying the edge costs

$$\begin{split} \min \sum_{e \in E} c_e x_e + \sum_{i \in V} \lambda_i \Big(\sum_{e \in \delta(i)} x_e - 2 \Big) & \longrightarrow \min \sum_{e \in E} (\underline{c_e + \lambda_{e_1} + \lambda_{e_2}}) x_e \\ \sum_{e \in E} x_e = |V| & \sum_{e \in E} x_e = |V| \\ \sum_{e \in S} x_e \leq |S| - 1, \ \forall S \text{ subtour of } G & \sum_{e \in S} x_e \leq |S| - 1, \ \forall S \text{ subtour of } G \\ x_e \in \{0, 1\}, \ \forall e \in E & x_e \in \{0, 1\}, \ \forall e \in E \end{split}$$

- If T is a tour, then LB = TSP value, else
- Iterative factors update for bound tightening:
 - a. positive for degrees > 2 to discourage selected edges,

MONTREA

• Adding factors on the nodes modifies the minimum 1-tree but not the optimal tour

• Adding factors on the nodes modifies the minimum 1-tree but not the optimal tour

• Adding factors on the nodes modifies the minimum 1-tree but not the optimal tour

POLYTECHNIQUE

MONTRÉA

1. 1-tree and Held-Karp Relaxation

2. Proposed Approach

3. Application and Results

Proposed Approach

 Predicting the Lagrangian
 Multipliers to kickstart the Lagrangian relaxation

 Leverage the graph structure of the TSP by using graph neural networks (GNN) for the multipliers inference

Graph Neural Networks

- Graph Neural Networks (GNNs) process graph-structured data:
 - Node Representation: GNNs learn to represent nodes based on their features and their neighbors'
 - Message Passing: Iterative process where nodes update their states by exchanging information with adjacent nodes

Graph Neural Networks

- GNNs for TSP:
 - TSP graph structure: GNNs handle the features and variable size of TSP representations
 - Multipliers generation: GNNs capture complex dependencies and patterns in the graph, aiding in better optimization

- Self-supervised Learning for the prediction of Lagrangian Multipliers:
 - \circ A GNN with parameters ω is used to predict Lagrangian multipliers,
 - the GNN is trained by computing the gradient on the bound

1. 1-tree and Held-Karp Relaxation

- 2. Proposed Approach
- 3. Application and Results

Training - Datasets

- Dataset randomly generated: Random, Clustered in sizes
 100 and 200
- Existing dataset: Hard

- **Training set**: TSP instances + branch-and-bound subgraphs
- Features: distances and BnB state on *edges*, average/min distances on *nodes*

Training - Model and Baselines

- Baselines:
 - · Optimal Solution,
 - · HK Relaxation,
 - Supervised (graph attention network + fully-connected NN)
- Trained model:
 - Self-Supervised (graph attention network + fully-connected NN)

Training

Integration with Branch-and-Bound

- $HK_{GNN_{\omega}}(\mathcal{G})$ provides a tight bound at each step of a BnB algorithm, enabling **pruning** and **filtering**
- Domain filtering: edges are **forced** or **excluded** from the solution based on replacement or insertion costs based on the 1-tree

Benchimol P, van Hoeve WJ, Régin J-C, Rousseau L-M, Rueher R, (2012), Improved Filtering for Weighted Circuit Constraints, Constraints 17:3, 205-233.

Practical considerations:

- Edges forced or excluded from the solution modify the graph, which is reflected in the features
- GNN-based multipliers generation is used in the 10 first nodes of the BnB
- 3. **HK+GNN:** the trained GNN is used to bootstrap the multipliers generation

- Compared to a BnB using HK alone, **HK+GNN** multiplier generation:
 - is 10% quicker in solving instances to optimality
 - reduces by 50% the optimality gap on timeout instances

- Compared to a BnB using HK alone, **HK+GNN** multiplier generation:
 - is 10% quicker in solving instances to optimality
 - ^o reduces by 50% the optimality gap on timeout instances

Configuration	Bran	ch-and-bound wi	th standar	d Held-Kar	p (HK)	Branch-and-bound with our approach $(GNN + HK)$				
	Time (sec.)	# solved (/50)	PDI	Filt. (%)	Opt. gap (%)	Time (sec.)	# solved (/50)	PDI	Filt. (%)	Opt. gap (%)
Random100	559	41/50	1127k	75.9	0.88		6			
Random200	1800	0/50	4.71m	67.8	1.82					
Clustered100	643	38/50	497k	17.7	0.19					
Clustered200	1800	0/50	922k	9.9	0.68					
Hard	1800	0/6	9.59M	6.4	0.32					

- Compared to a BnB using HK alone, **HK+GNN** multiplier generation:
 - is 10% quicker in solving instances to optimality
 - reduces by 50% the optimality gap on timeout instances

Configuration	Bran	ch-and-bound wi	th standar	d Held-Kar	p (HK)	Branch-and-bound with our approach $(GNN + HK)$				
	Time (sec.)	# solved (/50)	PDI	Filt. (%)	Opt. gap (%)	Time (sec.)	# solved (/50)	PDI	Filt. (%)	Opt. gap (%)
Random100	559	41/50	1127k	75.9	0.88	497 (- 11%)	6			
Random200	1800	0/50	4.71m	67.8	1.82	1800				
Clustered100	643	38/50	497k	17.7	0.19	590 (- 8%)				
Clustered200	1800	0/50	922k	9.9	0.68	1800				
Hard	1800	0/6	9.59M	6.4	0.32	1800				

- Compared to a BnB using HK alone, **HK+GNN** multiplier generation:
 - is 10% quicker in solving instances to optimality
 - reduces by 50% the optimality gap on timeout instances

Configuration	Bran	ch-and-bound wi	th standar	d Held-Kar	p (HK)	Branch-and-bound with our approach ($GNN + HK$)				
	Time (sec.)	# solved (/50)	PDI	Filt. (%)	Opt. gap (%)	Time (sec.)	# solved (/50)	PDI	Filt. (%)	Opt. gap (%)
Random100	559	41/50	1127k	75.9	0.88	497 (- 11%)	46/50 (+ 10%)			
Random200	1800	0/50	4.71m	67.8	1.82	1800	0/50 (+ 0%)			
Clustered100	643	38/50	497k	17.7	0.19	590 (- 8%)	40/50 (+ 5%)			
Clustered200	1800	0/50	922k	9.9	0.68	1800	0/50 (+ 0%)			
Hard	1800	0/6	9.59M	6.4	0.32	1800	0/6 (+ 0%)			

- Compared to a BnB using HK alone, **HK+GNN** multiplier generation:
 - is 10% quicker in solving instances to optimality
 - reduces by 50% the optimality gap on timeout instances

Configuration	Bran	ch-and-bound wi	th standar	d Held-Kar	p (HK)	Branch-and-bound with our approach $(GNN + HK)$					
	Time (sec.)	# solved (/50)	PDI	Filt. (%)	Opt. gap (%)	Time (sec.)	# solved (/50)	PDI	Filt. (%)	Opt. gap (%)	
Random100	559	41/50	1127k	75.9	0.88	497 (- 11%)	46/50 (+ 10%)	965k (- 14%)			
Random200	1800	0/50	4.71m	67.8	1.82	1800	0/50 (+ 0%)	4.26m (- 10%)			
Clustered100	643	38/50	497k	17.7	0.19	590 (- 8%)	40/50 (+ 5%)	470k (- 5%)			
Clustered200	1800	0/50	922k	9.9	0.68	1800	0/50 (+ 0%)	690k (- 25%)			
Hard	1800	0/6	9.59M	6.4	0.32	1800	0/6 (+ 0%)	9.36M (- 2%)			

- Compared to a BnB using HK alone, **HK+GNN** multiplier generation:
 - is 10% quicker in solving instances to optimality
 - reduces by 50% the optimality gap on timeout instances

Configuration	Bran	ch-and-bound wi	th standar	d Held-Kar	p (HK)	Branch-and-bound with our approach (GNN + HK)					
	Time (sec.)	# solved (/50)	PDI	Filt. (%)	Opt. gap (%)	Time (sec.)	# solved (/50)	PDI	Filt. (%)	Opt. gap (%)	
Random100	559	41/50	1127k	75.9	0.88	497 (- 11%)	46/50 (+ 10%)	965k (- 14%)	77.7 (+ 2%)		
Random200	1800	0/50	4.71m	67.8	1.82	1800	0/50 (+ 0%)	4.26m (- 10%)	70.6 (+ 4%)		
Clustered100	643	38/50	497k	17.7	0.19	590 (- 8%)	40/50 (+ 5%)	470k (- 5%)	20.3 (+ 15%)		
Clustered200	1800	0/50	922k	9.9	0.68	1800	0/50 (+ 0%)	690k (- 25%)	12.6 (+27%)		
Hard	1800	0/6	9.59M	6.4	0.32	1800	0/6 (+ 0%)	9.36M (- 2%)	6.5 (+1%)		

- Compared to a BnB using HK alone, **HK+GNN** multiplier generation:
 - is 10% quicker in solving instances to optimality
 - reduces by 50% the optimality gap on timeout instances

Configuration	Bran	ch-and-bound wi	th standar	d Held-Kar	p (HK)	Branch-and-bound with our approach ($GNN + HK$)					
	Time (sec.)	# solved (/50)	PDI	Filt. (%)	Opt. gap (%)	Time (sec.)	# solved (/50)	PDI	Filt. (%)	Opt. gap (%)	
Random100	559	41/50	1127k	75.9	0.88	497 (- 11%)	46/50 (+ 10%)	965k (- 14%)	77.7 (+ 2%)	0.48 (- 45%)	
Random200	1800	0/50	4.71m	67.8	1.82	1800	0/50 (+ 0%)	4.26m (- 10%)	70.6 (+ 4%)	0.59 (- 68%)	
Clustered100	643	38/50	497k	17.7	0.19	590 (- 8%)	40/50 (+ 5%)	470k (- 5%)	20.3 (+ 15%)	0.08 (- 58%)	
Clustered200	1800	0/50	922k	9.9	0.68	1800	0/50 (+ 0%)	690k (- 25%)	12.6 (+27%)	0.38 (- 44%)	
Hard	1800	0/6	9.59M	6.4	0.32	1800	0/6 (+ 0%)	9.36M (- 2%)	6.5 (+1%)	0.31 (- 3%)	

Conclusion

- Introduction of a self-supervised learning approach using GNNs and Held-Karp Lagrangian relaxation to predict accurate Lagrangian multipliers
- The approach has potential applications for more challenging TSP variants, and other Lagrangian relaxations
- Limitations: **costly GNN** calls, best results when the graph distribution is known beforehand

Learning Lagrangian Multipliers for the TSP

Thanks!

Augustin Parjadis, Louis-Martin Rousseau, Quentin Cappart, Bistra Dilkina, Aaron Ferber

arxiv.org/abs/2312.14836

