
Learning Lagrangian Multipliers
for the Travelling Salesman Problem

Augustin Parjadis, Quentin Cappart,
Bistra Dilkina, Aaron Ferber, Louis-Martin Rousseau

Introduction

Improved Filtering for
Weighted Circuit Constraints,
(Benchimol P, van Hoeve WJ, Régin J-C,
Rousseau L-M, Rueher R, 2012, Constraints
17:3, 205-233.)

● WeightedCircuit constraint: 1-tree
relaxation for domain filtering and
application to a Branch-and-Bound
solver

● Objective: improving the 1-tree
relaxation for the BnB solver

2

Plan

1. 1-tree and Held-Karp Relaxation

2. Proposed Approach

3. Application and Results

Plan

1. 1-tree and Held-Karp Relaxation

2. Proposed Approach

3. Application and Results

Introduction: Travelling Salesman Problem (TSP)

5

Introduction: Travelling Salesman Problem (TSP)

6

1. Minimize total tour cost

Introduction: Travelling Salesman Problem (TSP)

7

1. Minimize total tour cost

2. Each node is connected

by 2 edges

Introduction: Travelling Salesman Problem (TSP)

8

1. Minimize total tour cost

2. Each node is connected

by 2 edges

3. The tour has the right

length

Introduction: Travelling Salesman Problem (TSP)

9

1. Minimize total tour cost

2. Each node is connected

by 2 edges

3. The tour has the right

length

4. No disconnected

subtour is created

1-tree Relaxation

● A minimum 1-tree T is a minimum spanning tree on G\{1}, to

which {1} is connected back to T with 2 cheapest edges

10

1

2

5

3

4

10

20

5

14

15
7

12

22
16

40

1-tree Relaxation

● A minimum 1-tree T is a minimum spanning tree on G\{1}, to

which {1} is connected back to T with 2 cheapest edges

11

1

2

5

3

4

10

20

5

14

15
7

12

22
16

40

1-tree Relaxation

● A minimum 1-tree T is a minimum spanning tree on G\{1}, to

which {1} is connected back to T with 2 cheapest edges

12

1

2

5

3

4

10

20

5

14

15
7

12

22
16

40

1

2

5

3

4

10

20

5

14

15
7

12

22
16

40

1-tree Relaxation

● A minimum 1-tree T is a minimum spanning tree on G\{1}, to

which {1} is connected back to T with 2 cheapest edges

13

1

2

5

3

4

10

20

5

14

15
7

12

22
16

40

1

2

5

3

4

10

20

5

14

15
7

12

22
16

40

1

2

5

3

4

10

20

5

14

15
7

12

22
16

40

1-tree Relaxation

● A 1-tree is effectively the result of the relaxation of the

degree constraints in the TSP model

14

1-tree Relaxation

● A tour is a 1-tree, and finding a minimum 1-tree is fast: dual

bound generation

15

Bound: 50

1

2

5

3

4

10

20

5

14

15
7

12

22
16

40

Held-Karp Relaxation

● The 1-tree can be tightened by Lagrangean relaxation,

where 𝛌 penalizes the node degree violation

16

Held-Karp Relaxation

● This is equivalent to modifying the edge costs

17

Held-Karp Relaxation

● If T is a tour, then LB = TSP value, else

● Iterative factors update for bound tightening:
a. positive for degrees > 2 to discourage selected edges,

b. negative for degrees = 1,

c. 0 for degrees = 2

18

Bound: 50

1

2

5

3

4

1

2

5

3

4

𝛌2 = 4

𝛌3 = 0

𝛌4 = -2

𝛌5 = -2

Held-Karp Relaxation

● Adding factors on the nodes modifies the minimum 1-tree

but not the optimal tour

19

Bound: 50

1

2

5

3

4

10

20

5

14

15
7

12

22
16

40

1

2

5

3

4

14

18

9

12

11
9

14

20
16

38

𝛌2 = 4

𝛌3 = 0

𝛌4 = -2

𝛌5 = -2

Held-Karp Relaxation

● Adding factors on the nodes modifies the minimum 1-tree

but not the optimal tour

20

Bound: 50

1

2

5

3

4

10

20

5

14

15
7

12

22
16

40

1

2

5

3

4

14

18

9

12

11
9

14

20
16

38

𝛌2 = 4

𝛌3 = 0

𝛌4 = -2

𝛌5 = -2

Held-Karp Relaxation

● Adding factors on the nodes modifies the minimum 1-tree

but not the optimal tour

21

Bound: 50 Bound: 59

Optimal tour: 62

1

2

5

3

4

10

20

5

14

15
7

12

22
16

40

1

2

5

3

4

14

18

9

12

11
9

14

20
16

38

𝛌2 = 4

𝛌3 = 0

𝛌4 = -2

𝛌5 = -2

Held-Karp Relaxation

22

1

2

5

3

4

14

18

9

12

11
9

14

20
16

38

Bound: 59

1

2

5

3

4

16

18

11 10

9

11

14

18
16

38

𝛌2 = 2

𝛌3 = 0

𝛌4 = -2

𝛌5 = 0

Held-Karp Relaxation

23

1

2

5

3

4

16

18

11 10

9

11

14

18
16

38 Bound: 62

Bound: 59

1

2

5

3

4

14

18

9

12

11
9

14

20
16

38

𝛌2 = 2

𝛌3 = 0

𝛌4 = -2

𝛌5 = 0

Plan

1. 1-tree and Held-Karp Relaxation

2. Proposed Approach

3. Application and Results

Proposed Approach

● Predicting the Lagrangian
Multipliers to kickstart the
Lagrangian relaxation

● Leverage the graph structure of the
TSP by using graph neural networks
(GNN) for the multipliers inference

25

TSP

GNN

multipliers

Graph Neural Networks

● Graph Neural Networks (GNNs)
process graph-structured data:

○ Node Representation:
GNNs learn to represent
nodes based on their
features and their neighbors’

○ Message Passing: Iterative
process where nodes update
their states by exchanging
information with adjacent
nodes

26

Graph Neural Networks

● GNNs for TSP:

○ TSP graph structure: GNNs
handle the features and
variable size of TSP
representations

○ Multipliers generation:
GNNs capture complex
dependencies and patterns
in the graph, aiding in better
optimization

27

Learning Approach

● Self-supervised Learning for the prediction of Lagrangian Multipliers:

○ A GNN with parameters is used to predict Lagrangian multipliers,

○ the GNN is trained by computing the gradient on the bound

28

multipliers bound
GNN()

Learning Approach

29

multipliers bound
GNN()

Learning Approach

30

multipliers bound
GNN()

Learning Approach

31

multipliers bound
GNN()

GNN backprop

Learning Approach

32

multipliers bound
GNN()

GNN backprop

HK multipliers
update

Held-Karp multipliers update

33

HK multipliers
update

Held-Karp relaxation

Plan

1. 1-tree and Held-Karp Relaxation

2. Proposed Approach

3. Application and Results

Training - Datasets

35

● Dataset randomly generated: Random, Clustered in sizes

100 and 200

● Existing dataset: Hard

● Training set: TSP instances + branch-and-bound subgraphs

● Features: distances and BnB state on edges, average/min

distances on nodes

Training - Model and Baselines

36

● Baselines:

• Optimal Solution,

• HK Relaxation,

• Supervised (graph attention network + fully-connected NN)

● Trained model:

• Self-Supervised (graph attention network + fully-connected NN)

Training

37

HK bound

Supervised learning

Self-supervised learning

Optimal cost

Integration with Branch-and-Bound

● provides a tight bound at each step of a

BnB algorithm, enabling pruning and filtering

● Domain filtering: edges are forced or excluded from the

solution based on replacement or insertion costs based on

the 1-tree

Benchimol P, van Hoeve WJ, Régin J-C, Rousseau L-M, Rueher R, (2012),
Improved Filtering for Weighted Circuit Constraints, Constraints 17:3, 205-233.

38

Integration with Branch-and-Bound

Practical considerations:

1. Edges forced or excluded from the solution modify the

graph, which is reflected in the features

2. GNN-based multipliers generation is used in the 10 first

nodes of the BnB

3. HK+GNN: the trained GNN is used to bootstrap the

multipliers generation

39

Experimental Results

● Compared to a BnB using HK alone, HK+GNN multiplier generation:

○ is 10% quicker in solving instances to optimality

○ reduces by 50% the optimality gap on timeout instances

40

optimality
gap in %

Experimental Results

● Compared to a BnB using HK alone, HK+GNN multiplier generation:

○ is 10% quicker in solving instances to optimality

○ reduces by 50% the optimality gap on timeout instances

41

Experimental Results

● Compared to a BnB using HK alone, HK+GNN multiplier generation:

○ is 10% quicker in solving instances to optimality

○ reduces by 50% the optimality gap on timeout instances

42

Experimental Results

● Compared to a BnB using HK alone, HK+GNN multiplier generation:

○ is 10% quicker in solving instances to optimality

○ reduces by 50% the optimality gap on timeout instances

43

Experimental Results

● Compared to a BnB using HK alone, HK+GNN multiplier generation:

○ is 10% quicker in solving instances to optimality

○ reduces by 50% the optimality gap on timeout instances

44

Experimental Results

● Compared to a BnB using HK alone, HK+GNN multiplier generation:

○ is 10% quicker in solving instances to optimality

○ reduces by 50% the optimality gap on timeout instances

45

Experimental Results

● Compared to a BnB using HK alone, HK+GNN multiplier generation:

○ is 10% quicker in solving instances to optimality

○ reduces by 50% the optimality gap on timeout instances

46

Conclusion

● Introduction of a self-supervised learning approach using

GNNs and Held-Karp Lagrangian relaxation to predict

accurate Lagrangian multipliers

● The approach has potential applications for more

challenging TSP variants, and other Lagrangian relaxations

● Limitations: costly GNN calls, best results when the graph

distribution is known beforehand

47

Learning Lagrangian Multipliers for the TSP

Thanks!

Augustin Parjadis, Louis-Martin Rousseau,

Quentin Cappart, Bistra Dilkina, Aaron Ferber

arxiv.org/abs/2312.14836

48

