Introduction

edge shortening

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

On the complexity of integer programming with fixed-coefficient scaling

Jorke de Vlas supervised by Peter Jonsson

September 6, 2024

Introduction	boundedness	arc consistency	edge shortening	edge compression
●000	O	00	00	
Backgroun	d			

Introduction	boundedness	arc consistency	edge shortening	edge compression
●000	0	00	00	
Backgroun	ıd			

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• Integer variables x_1, x_2, \ldots, x_n

Introduction	boundedness	arc consistency	edge shortening	edge compression
●000	0	00	00	
Backgrour	nd			

- Integer variables x_1, x_2, \ldots, x_n
- Inequalities of the form $a_1x_1 + a_2x_2 + \ldots + a_nx_n \leq b$, $a_i, b \in \mathbb{Z}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction	boundedness	arc consistency	edge shortening	edge compression
●000	O	00	00	
Backgrou	nd			

- Integer variables x_1, x_2, \ldots, x_n
- Inequalities of the form $a_1x_1 + a_2x_2 + \ldots + a_nx_n \leq b$, $a_i, b \in \mathbb{Z}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

NP-complete in general

Introduction	boundedness	arc consistency	edge shortening	edge compression
●000	0	00	00	
Backgrou	nd			

- Integer variables x_1, x_2, \ldots, x_n
- Inequalities of the form $a_1x_1 + a_2x_2 + \ldots + a_nx_n \leq b$, $a_i, b \in \mathbb{Z}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

NP-complete in general

Can we simplify to something solvable in polynomial time?

Introduction 0000	boundedness 0	arc consistency	edge shortening 00	edge compression
Backgroun	d			

Equations of the form $a_1x_1 + a_2x_2 + \ldots + a_nx_n \leq b$, $a_i, b \in \mathbb{Z}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Introduction 0000	boundedness 0	arc consistency	edge shortening 00	edge compression
Backgroun	d			

Equations of the form $a_1x_1 + a_2x_2 + \ldots + a_nx_n \leq b$, $a_i, b \in \mathbb{Z}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

At most two variables per inequality (TVPI):

Introduction	boundedness	arc consistency	edge shortening	edge compression
○●○○	O	00	00	
Backgrou	nd			

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Idea: further restrict allowed inequalities

Equations of the form $a_1x_1 + a_2x_2 \leq b$, $a_1, a_2, b \in \mathbb{Z}$

At most two variables per inequality (TVPI):

Introduction	boundedness	arc consistency	edge shortening	edge compression
○●○○	0	00	00	
Backgroun	ıd			

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Idea: further restrict allowed inequalities

Equations of the form $a_1x_1 + a_2x_2 \leq b$, $a_1, a_2, b \in \mathbb{Z}$

At most two variables per inequality (TVPI): NP-complete (Lagarias, 1985)

Introduction	boundedness	arc consistency	edge shortening	edge compression
○●○○	O	00	00	
Backgroun	d			

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Idea: further restrict allowed inequalities

Equations of the form $a_1x_1 + a_2x_2 \leq b$, $a_1, a_2, b \in \mathbb{Z}$

At most two variables per inequality (TVPI): NP-complete (Lagarias, 1985)

TVPI, monotone inequalities:

Introduction	boundedness	arc consistency	edge shortening	edge compression
0●00	O	00	00	
Backgroun	d			

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Idea: further restrict allowed inequalities

Equations of the form $a_1x_1 \leq a_2x_2 + b$, $a_1, a_2 \in \mathbb{N}$, $b \in \mathbb{Z}$

At most two variables per inequality (TVPI): NP-complete (Lagarias, 1985)

TVPI, monotone inequalities:

Introduction 0000	boundedness 0	arc consistency	edge shortening 00	edge compression
Backgroun	d			

Equations of the form $a_1x_1 \leq a_2x_2 + b$, $a_1, a_2 \in \mathbb{N}$, $b \in \mathbb{Z}$

At most two variables per inequality (TVPI): NP-complete (Lagarias, 1985)

TVPI, monotone inequalities: NP-complete (Lagarias, 1985)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Introduction	boundedness	arc consistency	edge shortening	edge compression
0000	0	00	00	
Backgroun	d			

Equations of the form $a_1x_1 \leq a_2x_2 + b$, $a_1, a_2 \in \mathbb{N}$, $b \in \mathbb{Z}$

At most two variables per inequality (TVPI): NP-complete (Lagarias, 1985)

TVPI, monotone inequalities: NP-complete (Lagarias, 1985) TVPI, restrict scaling coefficients to $\{\pm 1\}$ (UTVPI):

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Introduction	boundedness	arc consistency	edge shortening	edge compression
0000	0	00	00	
Backgroun	d			

Equations of the form $a_1x_1 + a_2x_2 \leq b$, $a_1, a_2 \in \{\pm 1\}$, $b \in \mathbb{Z}$

At most two variables per inequality (TVPI): NP-complete (Lagarias, 1985)

TVPI, monotone inequalities: NP-complete (Lagarias, 1985)

TVPI, restrict scaling coefficients to $\{\pm 1\}$ (UTVPI):

Introduction	boundedness	arc consistency	edge shortening	edge compression
○●○○	O	00	00	
Backgroun	d			

Equations of the form $a_1x_1 + a_2x_2 \leq b$, $a_1, a_2 \in \{\pm 1\}$, $b \in \mathbb{Z}$

At most two variables per inequality (TVPI): NP-complete (Lagarias, 1985)

TVPI, monotone inequalities: NP-complete (Lagarias, 1985)

TVPI, restrict scaling coefficients to $\{\pm1\}$ (UTVPI): In P (Jaffar et al, 1994)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Introduction	boundedness	arc consistency	edge shortening	edge compression
0●00	O	00	00	
Backgroun	d			

Equations of the form $a_1x_1 + a_2x_2 \leq b$, $a_1, a_2 \in \{\pm 1, \pm 2\}$, $b \in \mathbb{Z}$

At most two variables per inequality (TVPI): NP-complete (Lagarias, 1985)

TVPI, monotone inequalities: NP-complete (Lagarias, 1985)

TVPI, restrict scaling coefficients to $\{\pm1\}$ (UTVPI): In P (Jaffar et al, 1994)

- ロ ト - 4 回 ト - 4 □ - 4

TVPI, restrict scaling coefficients to $\{\pm 1,\pm 2\}$ (BTVPI): In P (Wojciechowski & Subramani, 2023)

Introduction	boundedness	arc consistency	edge shortening	edge compression
00●0	O	00	00	0000
In this talk				

Equations of the form $c^{a_1}x_1 \leq c^{a_2}x_2 + b$, $a_1, a_2 \in \mathbb{N}$, $b \in \mathbb{Z}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Equations of the form $c^{a_1}x_1 \leq c^{a_2}x_2 + b$, $a_1, a_2 \in \mathbb{N}$, $b \in \mathbb{Z}$

This is in P!

Introduction	boundedness	arc consistency	edge shortening	edge compression
0000	O	00	00	
In this talk				

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Equations of the form $c^{a_1}x_1 \leq c^{a_2}x_2 + b$, $a_1, a_2 \in \mathbb{N}$, $b \in \mathbb{Z}$

This is in P!

WLOG, either a_1 or a_2 is zero

Introduction	boundedness	arc consistency	edge shortening	edge compression
00●0	O	00	00	
In this talk				

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Equations of the form $x_1 \leq c^a x_2 + b$ or $c^a x_1 + b \leq x_2$, $a \in \mathbb{N}$, $b \in \mathbb{Z}$

This is in P!

WLOG, either a_1 or a_2 is zero

Introduction	boundedness	arc consistency	edge shortening	edge compression
000●	0	00	00	
Model as g	graph			

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

- A vertex per variable
- A (directed) arc from x_1 to x_2 per inequality
- Arcs have weight: $a_1 a_2$

Introduction	boundedness	arc consistency	edge shortening	edge compression
000●	0	00	00	
Model as g	raph			

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- A vertex per variable
- A (directed) arc from x_1 to x_2 per inequality

Arcs have weight: $a_1 - a_2$

Example:

- $x_1 \le 2x_2 1$ • $4x_2 + 1 \le x_3$ • $x_3 \le x_1 + 4$
- $x_3 \le 4x_4$
- $x_4 \le 2x_1 2$

Introduction	boundedness	arc consistency	edge shortening	edge compression
000●	0	00	00	
Model as g	raph			

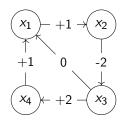
A vertex per variable

A (directed) arc from x_1 to x_2 per inequality

Arcs have weight: $a_1 - a_2$

Example:

- $x_1 \le 2x_2 1$
- $4x_2 + 1 \le x_3$
- $x_3 \le x_1 + 4$
- $x_3 \le 4x_4$
- $x_4 \leq 2x_1 2$



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

There exists an Ω such that:

If there exists a solution, then there exists one where each variable is bounded by $\boldsymbol{\Omega}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Furthermore, $log(\Omega)$ is polynomial in the input size

There exists an Ω such that:

If there exists a solution, then there exists one where each variable is bounded by $\boldsymbol{\Omega}.$

Furthermore, $log(\Omega)$ is polynomial in the input size

This is a (small variation of) a known result. (Papadimitriou, 1981)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction	boundedness	arc consistency	edge shortening	edge compression
0000	O	●0	00	
Arc cons	istency			

Associate a lower bound with each variable, initially $x_i \ge -\Omega$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Associate a lower bound with each variable, initially $x_i \ge -\Omega$.

Lower bounds can be propagated along arcs

Example: $x_1 \ge 0$, $x_1 \le 2x_2 - 1 \implies x_2 \ge 1$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Associate a lower bound with each variable, initially $x_i \ge -\Omega$.

Lower bounds can be propagated along arcs

Example: $x_1 \ge 0$, $x_1 \le 2x_2 - 1 \implies x_2 \ge 1$

If we reach $x_i > \Omega$ for some $i \implies$ No solution exists

Associate a lower bound with each variable, initially $x_i \ge -\Omega$.

Lower bounds can be propagated along arcs

Example: $x_1 \ge 0$, $x_1 \le 2x_2 - 1 \implies x_2 \ge 1$

If we reach $x_i > \Omega$ for some $i \implies$ No solution exists

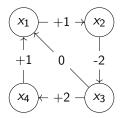
If no more propagations are possible \implies Lower bounds form solution

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction	boundedness	arc consistency	edge shortening	edge compression
0000	O	○●	00	
Fxample				

- $x_1 \le 2x_2 1$
- $4x_2 + 1 \le x_3$
- $x_3 \le x_1 + 4$
- $x_3 \le 4x_4$
- $x_4 \le 2x_1 2$

Suppose $\Omega = 10$.



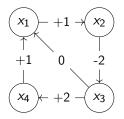
◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Introduction	boundedness	arc consistency	edge shortening	edge compression
0000	O	○●	00	
Example				

- $x_1 \le 2x_2 1$
- $4x_2 + 1 \le x_3$
- $x_3 \le x_1 + 4$
- $x_3 \le 4x_4$
- $x_4 \le 2x_1 2$

Suppose $\Omega = 10$.

 $x_3 \geq -10$



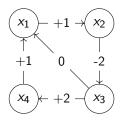
◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Introduction	boundedness	arc consistency	edge shortening	edge compression
0000	O	○●	00	
Example				

- $x_1 \le 2x_2 1$
- $4x_2 + 1 \le x_3$
- $x_3 \le x_1 + 4$
- $x_3 \leq 4x_4$
- $x_4 \le 2x_1 2$

Suppose $\Omega = 10$.

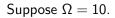
$$x_3 \ge -10 \implies x_4 \ge -2$$

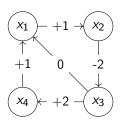


◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Introduction	boundedness	arc consistency	edge shortening	edge compression
0000	O	○●	00	
Example				

- $x_1 \le 2x_2 1$
- $4x_2 + 1 \le x_3$
- $x_3 \le x_1 + 4$
- $x_3 \leq 4x_4$
- $x_4 \le 2x_1 2$



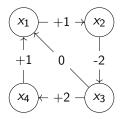


◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

 $x_3 \geq -10 \implies x_4 \geq -2 \implies x_1 \geq 0$

Introduction	boundedness	arc consistency	edge shortening	edge compression
0000	O	○●	00	
Example				

- $x_1 \leq 2x_2 1$
- $4x_2 + 1 \le x_3$
- $x_3 \le x_1 + 4$
- $x_3 \le 4x_4$
- $x_4 \leq 2x_1 2$



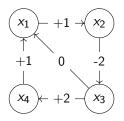
▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Suppose $\Omega = 10$.

 $\begin{array}{l} x_3 \geq -10 \implies x_4 \geq -2 \implies x_1 \geq 0 \implies x_2 \geq 1 \implies x_3 \geq \\ 5 \implies x_4 \geq 2 \implies x_1 \geq 2 \implies x_2 \geq 2 \implies x_3 \geq 9 \implies x_1 \geq \\ 5 \implies x_2 \geq 3 \implies x_3 \geq 12 \end{array}$

Introduction	boundedness	arc consistency	edge shortening	edge compression
0000	○	○●	00	
Example				

- $x_1 \leq 2x_2 1$
- $4x_2 + 1 \le x_3$
- $x_3 \le x_1 + 4$
- $x_3 \le 4x_4$
- $x_4 \leq 2x_1 2$



▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Suppose $\Omega = 10$.

 $\begin{array}{l} x_3 \geq -10 \implies x_4 \geq -2 \implies x_1 \geq 0 \implies x_2 \geq 1 \implies x_3 \geq \\ 5 \implies x_4 \geq 2 \implies x_1 \geq 2 \implies x_2 \geq 2 \implies x_3 \geq 9 \implies x_1 \geq \\ 5 \implies x_2 \geq 3 \implies x_3 \geq 12 \end{array}$

Problem: the propagation chain gets way too long $(\mathcal{O}(\Omega n))$

Introduction	boundedness	arc consistency	edge shortening	edge compression
0000	O	00	●○	
Edge short	ening			

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Consider the first two steps of the chain $x_3 \ge -10 \implies x_4 \ge -2 \implies x_1 \ge 0$

- $x_3 \le 4x_4$
- $x_4 \le 2x_1 2$

Introduction	boundedness	arc consistency	edge shortening	edge compression
0000	O	00	●○	
Edge short	tening			

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Consider the first two steps of the chain $x_3 \ge -10 \implies x_4 \ge -2 \implies x_1 \ge 0$ • $x_3 < 4x_4$

- $x_4 \leq 2x_1 2$

This simplifies to $x_3 \leq 8x_1 - 8$

If we add this arc: $x_3 \ge -10 \implies x_1 \ge 0$

Consider the first two steps of the chain $x_3 \ge -10 \implies x_4 \ge -2 \implies x_1 \ge 0$ • $x_3 < 4x_4$

• $x_4 \leq 2x_1 - 2$

This simplifies to $x_3 \leq 8x_1 - 8$

If we add this arc: $x_3 \ge -10 \implies x_1 \ge 0$

Solution: preprocess graph, add new arc for every two consecutive arcs

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introduction	boundedness	arc consistency	edge shortening	edge compression
0000	O	00	○●	
Edge shor	tening			

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Problem: this is not always valid

- $x_3 \le 2x_4$
- $2x_4 \leq x_1$

This does not combine into $x_3 \leq x_1$

Problem: this is not always valid

- $x_3 \le 2x_4$
- $2x_4 \le x_1$

This does not combine into $x_3 \leq x_1$

This only happens if the first arc has positive weight and the second one has negative weight.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Problem: this is not always valid

- $x_3 \le 2x_4$
- $2x_4 \le x_1$

This does not combine into $x_3 \leq x_1$

This only happens if the first arc has positive weight and the second one has negative weight.

Solution: only add valid arc pairs

For any three consecutive arcs, we can combine at least one pair

After $\mathcal{O}(\log(\Omega n))$ many iterations, every propagation chain reduces to one of length at most 2.

Introduction	boundedness	arc consistency	edge shortening	edge compression
0000	0	00	○●	
Edge shorte	ening			

Problem: this is not always valid

- $x_3 \le 2x_4$
- $2x_4 \le x_1$

This does not combine into $x_3 \leq x_1$

This only happens if the first arc has positive weight and the second one has negative weight.

Solution: only add valid arc pairs

For any three consecutive arcs, we can combine at least one pair

After $\mathcal{O}(\log(\Omega n))$ many iterations, every propagation chain reduces to one of length at most 2.

New problem: way too many new arcs. Coefficients get way too large.

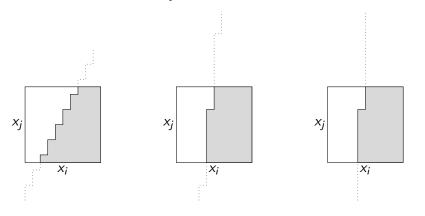
Introduction	boundedness	arc consistency	edge shortening	edge compression
0000	0	00	00	●000
Edge comp	ression			

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

We can remove irrelevant arcs. We can replace arcs with large coefficients with arcs with lower coefficients.

We can remove irrelevant arcs. We can replace arcs with large coefficients with arcs with lower coefficients.

Consider arcs from x_i to x_j .



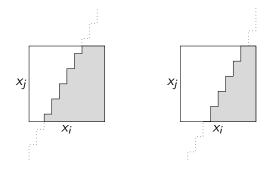
Introduction	boundedness	arc consistency	edge shortening	edge compression
0000	0	00	00	○●○○
Redunda	nt arcs			

Observation: every arc is equivalent to one with weight at most $\mathcal{O}(\log(\Omega))$

イロト 不得 トイヨト イヨト

э

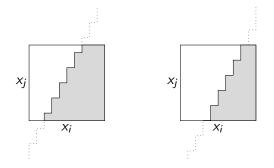
Now consider arcs from x_i to x_j with the same weight.



Introduction	boundedness	arc consistency	edge shortening	edge compression
0000	O	00	00	0●00
Redunda	nt arcs			

Observation: every arc is equivalent to one with weight at most $\mathcal{O}(\log(\Omega))$

Now consider arcs from x_i to x_j with the same weight.



We only need the arc with the most restrictive constant term

(日) (四) (日) (日) (日)

Introduction	boundedness	arc consistency	edge shortening	edge compression
0000	O	00	00	00●0
Arc count				

(ロ)、(型)、(E)、(E)、 E) の(()

Overall, we only need $\mathcal{O}(\log(\Omega))$ arcs between any two vertices

This means at most $\mathcal{O}(n^2 \log(\Omega))$ arcs in total.

Introduction	boundedness	arc consistency	edge shortening	edge compression
0000	O	00	00	000●
Final alg	orithm			

- \bullet transition into finite domain: compute Ω
- repeat $\mathcal{O}(\log(\Omega))$ times:
 - merge consecutive arcs into new arcs (if possible)

- resize arcs with too large coefficients
- remove irrelevant arcs
- enforce arc consistency

Runtime: $\mathcal{O}(n^8 \log^5(n))$

Introduction	boundedness	arc consistency	edge shortening	edge compression
0000	O	00	00	000●
Final alg	orithm			

- \bullet transition into finite domain: compute Ω
- repeat $\mathcal{O}(\log(\Omega))$ times:
 - merge consecutive arcs into new arcs (if possible)

- resize arcs with too large coefficients
- remove irrelevant arcs
- enforce arc consistency

Runtime: $\mathcal{O}(n^8 \log^5(n))$

Thank you for listening!