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Background

In Integer Programming, the goal is to solve linear inequalities over
integers

@ Integer variables x1, X2, ..., X,
@ Inequalities of the form ajxy +axxo +...+apx, < b, a;,b € Z
NP-complete in general

Can we simplify to something solvable in polynomial time?
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Background

Idea: further restrict allowed inequalities
Equations of the form a;x; + axxo < b, a1,a2 € {£1,4+2}, b€ Z

At most two variables per inequality (TVPI): NP-complete
(Lagarias, 1985)

TVPI, monotone inequalities: NP-complete (Lagarias, 1985)

TVPI, restrict scaling coefficients to {1} (UTVPI): In P (Jaffar
et al, 1994)

TVPI, restrict scaling coefficients to {+1, £2} (BTVPI): In P
(Wojciechowski & Subramani, 2023)
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In this talk

TVPI, monotone inequalities, restrict scaling coefficients to powers
of some c € N

Equations of the form x; < ¢ + b or ¢¥x; + b < x», a € N,
beZ

This is in P!

WLOG, either a; or as is zero
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Model as graph

A vertex per variable
A (directed) arc from x; to x> per inequality

Arcs have weight: a; — a»

Example:
o x1 <2xp—1 +1
0 4dx+1<x3
e x3<x1+4 +1 -2
0 x3<4dxq
0 x4 <2x3 —2 +2
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Transitioning into a finite domain

There exists an Q such that:

If there exists a solution, then there exists one where each variable
is bounded by €.

Furthermore, log(2) is polynomial in the input size

This is a (small variation of) a known result. (Papadimitriou, 1981)
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Arc consistency

Associate a lower bound with each variable, initially x; > —Q.
Lower bounds can be propagated along arcs

Example: x3 >0, x1 <20 -1 = x >1

If we reach x; > € for some i — No solution exists

If no more propagations are possible = Lower bounds form
solution
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0 4xo+1<x3

e x3<x1+4 +1 0 -2
0 x3 <4xy

@ x5 <2x1—2 _|_2

Suppose 2 = 10.

x3>—-10 — x4> -2 — x3 >0
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arc consistency

oce

x1 <2xp —1 +1
4xo +1 < x3

x3 < x1+4 +1 0 -2

x3 < 4xy
x4 < 2x1 — 2 e +2

Suppose 2 = 10.

x32>-10 —m x4> -2 — x>0 = x>1 —= x3>
b= 422 = 122 = x>22 = x3>9 = x1 >
5= >3 = x3>12

Problem: the propagation chain gets way too long (O(2n))
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Edge shortening

Consider the first two steps of the chain
x3>—-10 — x4 > -2 — x>0

0 x3 <4xy
@ x4 <2x1—2
This simplifies to x3 < 8x; — 8
If we add this arc: x3 > —10 — x; >0

Solution: preprocess graph, add new arc for every two consecutive
arcs
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Edge shortening

Problem: this is not always valid
0 x3 < 2x4
0 2x4 < x1
This does not combine into x3 < xq

This only happens if the first arc has positive weight and the
second one has negative weight.

Solution: only add valid arc pairs
For any three consecutive arcs, we can combine at least one pair

After O(log(£2n)) many iterations, every propagation chain reduces
to one of length at most 2.

New problem: way too many new arcs. Coefficients get way too
large.
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Edge compression

We can remove irrelevant arcs. We can replace arcs with large
coefficients with arcs with lower coefficients.

Consider arcs from x; to x;.




edge compression
0®00

Redundant arcs

Observation: every arc is equivalent to one with weight at most
O(log(£2))

Now consider arcs from x; to x; with the same weight.

Xj Xj



edge compression
0®00

Redundant arcs

Observation: every arc is equivalent to one with weight at most
O(log(£2))

Now consider arcs from x; to x; with the same weight.

Xj Xj

We only need the arc with the most restrictive constant term
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Arc count

Overall, we only need O(log(2)) arcs between any two vertices

This means at most O(n?log(f)) arcs in total.
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Final algorithm

@ transition into finite domain: compute 2

o repeat O(log(R)) times:
e merge consecutive arcs into new arcs (if possible)
e resize arcs with too large coefficients
e remove irrelevant arcs

@ enforce arc consistency

Runtime: O(n®log®(n))
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Final algorithm

@ transition into finite domain: compute 2

o repeat O(log(R)) times:
e merge consecutive arcs into new arcs (if possible)
e resize arcs with too large coefficients
e remove irrelevant arcs

@ enforce arc consistency

Runtime: O(n®log®(n))

Thank you for listening!
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