Does your dynamic programming code output correct values?

Pseudo-Boolean Reasoning About States and Transitions to Certify Dynamic Programming and Decision Diagram Algorithms

Emir Demirović¹, Ciaran McCreesh², Matthew J. McIlree², Jakob Nordström³⁴, Andy Oertel⁴³, Konstantin Sidorov¹

¹Delft University of Technology ²University of Glasgow ³University of Copenhagen ⁴Lund University

Knapsack problem, Algorithms 101

Knapsack problem, dynamic programming

Input data

Item #	Weight	Profit
1	1	2
2	3	4
3	5	7
4	7	10

At most 8

Dynamic programming table

	1	2	3	4	5	6	7	8
1	2	2	2	2	2	2	2	2
2								
3								
4								

Dynamic programming recurrence: $P(k + 1, w) = \max(P(k, w), v_k) + P(k, w - w_k)$

Off-by-one error! Those should have been v_{k+1} and w_{k+1}

Knapsack problem, dynamic programming

Input data

Item #	Weight	Profit
1	1	2
2	3	4
3	5	7
4	7	10

At most 8

Dynamic programming table

	1	2	3	4	5	6	7	8
1	2	2	2	2	2	2	2	2
2	2	2	4	6	6	6	6	6
3	2	2	4	6	7	9	9	11
4	2	2	4	6	7	9	10	12

Dynamic programming recurrence: $P(k+1,w) = \max(P(k,w), v_{k+1} + P(k,w-w_{k+1}))$

And then it gets worse

DP is surprisingly error-prone:

- Implementation errors: off-by-one, dimension mix-ups, etc.
- Incorrect recurrences

Matrix chain multiplication is another example:

$$M(k,k) = 0 M(j,k) = \min_{\ell} (M(j,\ell) + M(\ell+1,k) + p_{j-1}p_k p_{\ell})$$

Our contribution: embedding the DP transitions in **proof logging**

Introduce new variables representing the DP states

Justify every DP transition with a statement of the form "If the previous states were valid, so is the next one"

Extract the unconditional bound for the state encoding the input problem

Proof logging workflow

Solver

Optimal solution

$$2x + 3y \rightarrow \max$$

$$(1)x + 2y \le 3$$

$$(2)4x + 5y \le 10$$

$$x, y \text{ natural}$$

Optimality proof

•
$$\frac{1}{3} \times (1) + \frac{2}{3} \times (2)$$

- [(3)]
- $\frac{1}{2}(1) + \frac{1}{2}(4)$

Proof logging workflow

Problem instance

Checker

Yea/nay

 $2x + 3y \rightarrow \max$ $(1)x + 2y \le 3$ $(2)4x + 5y \le 10$ x, y natural

Optimality proof

$$\cdot \frac{1}{3}(1) + \frac{2}{3} \times (2)$$

$$\cdot \frac{1}{2}(1) + \frac{1}{2}(4)$$

Proof logging workflow

Let's try fitting it in the DP context

We need to encode the **input problem** and the **proof for the DP table values**

The first part is easy, we re-formulate the knapsack as a pseudo-Boolean optimization problem:

$$2x_1 + 4x_2 + 7x_3 + 10x_4 \to \max \text{ Profits}$$
 Weights $x_1 + 3x_2 + 5x_3 + 7x_4 \le 8$ Capacity $x_j \in \{0, 1\}, 1 \le j \le 4$

But how to fit the DP table on the proof framework?

Column: $x_1 + 3x_2 \le 4$

Entry: $2x_1 + 4x_2 \le 6$

	1	2	3	4	5	6	7	8
1	2	2	2	2	2	2	2	2
2	2	2	4	6	6	6	6	6
3	2	2	4	6	7	9	9	11
4	2	2	4	6	7	9	10	12

Entry: $2x_1 + 4x_2 \le 6$

	1	2	3	4	5	6	7	8
1	2	2	2	2	2	2	2	2
2	2	2	4	6	6	6	6	6
3	2	2	4	6	7	9	9	11
4	2	2	4	6	7	9	10	12

Weight bound

Profit bound

For any feasible solution, $x_1 + 3x_2 \ge 5$ $\sqrt{2x_1 + 4x_2} \le 6$ holds

Entry: $2x_1 + 4x_2 \le 6$

	1	2	3	4	5	6	7	8
1	2	2	2	2	2	2	2	2
2	2	2	4	6	6	6	6	6
3	2	2	4	6	7	9	9	11
4	2	2	4	6	7	9	10	12

Weight bound

Profit bound

For any feasible solution, $W_5^2 \vee P_6^2$ holds

Interlude: VeriPB

- A proof system and a checker for pseudo-Boolean problems
- Strengthening rules for reasoning without loss of optimality:
 - Introducing new variables
 - Symmetry breaking
 - Dominance reasoning
 - ...and many more!

Starting from the knapsack DP table, we now have new variables

$$W_w^k \leftrightarrow w_1 x_1 + \dots + w_k x_k \ge w$$

and

$$P_p^k \leftrightarrow p_1 x_1 + \dots + p_k x_k \le p$$

- For each P(w,k) = p, we want declare $W_{w+1}^k \vee P_p^k$
- Left term is false for the whole knapsack, and P_p^k is an objective bound we are looking for

Modeling DP transitions in the proof

...and $W_5^2 \vee P_2^1$

True if $W_2^1 \vee P_2^1$...

	1							
1	2	2	2	2	2	2	2	2
2	2	2	4	6	6	6	6	6
	2							
4	2	2	4	6	7	9	10	12

Derive an implication $(W_2^1 \vee P_2^1) \wedge (W_5^1 \vee P_2^1) \Rightarrow (W_5^2 \vee P_6^2)$

How well does this work?

- Enabling proof logging = writing a few lines to a file per DP entry
- Verifying the log is super-linear w.r.t. the number of steps
- Verifying kernel proofs scales linearly

Wrap-up

An approach for encoding states and justifying transitions in VeriPB

Low-maintenance technique

- Little performance overhead
- Directly maps to the DP computation
- No need for a separate proof system!

What is next?

- Engineering improvements
- Decision diagram use cases

VeriPB is general enough to capture diverse inference techniques