Does your dynamic
programming code
output correct values?

Pseudo-Boolean Reasoning About States and Transitions to Certify
Dynamic Programming and Decision Diagram Algorithms

Emir Demirovic¢!, Ciaran McCreesh?, Matthew J. Mcllree?,
Jakob Nordstrom34, Andy Oertel43, Konstantin Sidorov’

'Delft University of Technology
?University of Glasgow
3University of Copenhagen
“Lund University



Knapsack problem, Algorithms 101




Knapsack problem, dynamic

programiming
Input data Dynamic programming table
Item # Weight Profit L 2 | 3|4 |5 |6 |7/ 8

L

AW IN =

p
3
4

At most 8

Dynamic programming recurrence: P(k + 1,w) = max(P(k,w), vy + P(k,w — wy))

Off-by-one error! Those should have been vy, ; and wy,,



Knapsack problem, dynamic
programming

Input data Dynamic programming table

Item # Weight Profit

L

p
3
4

At most 8

Dynamic programming recurrence: P(k + 1,w) = max(P(k,w), Vy+1 + P(k,w — Wy 11))



And then it gets worse

DP is surprisingly error-prone:
* Implementation errors: off-by-one, dimension mix-ups, etc.
* Incorrect recurrences

Matrix chain multiplication is another example:
M(k,k) =0
M(j, k) = m}n(M(j, OH)+ME+1,k)+ pj_lpkpg)




Our contribution: embedding the DP
transitions in proof logging

\J
"E_l ﬂl Introduce new variables representing the DP states

m Justify every DP transition with a statement of the form “If the previous
states were valid, so is the next one”

Extract the unconditional bound for the state encoding the input problem



Proof logging workflow

|

Problem
Instance

I

— max
(Dx+2y <3
(2)4x + 5y < 10
X,y natural

~N

L oo

v

Optimal
solution

]

(

\_

Optimality

proof

c 2 (D) +2x(2)
- 13
c— (1) +-(4)




Proof logging workflow

Problem
{ T ——. H Checker H Yea/nay J

T
[ 1 [ Optimality
X proof )
— max ; <
(Dx+2y <3 W1 2
(2)4x + 5y < 10 s (D +5%(2)
x,y natural * 1(3)]
SHOREIC)




Proof logging workflow

Problem
{ instance H Checker H Yea/nay J

T
i \  Optimality
X proof )
— MaxX . <
(Dx+2y <3 1 2= )z 1
(2)4x + 5y <10 3 (2) |;W+5x@
X,y natural . [(3)]
() 45 (@)

\_ y g )




Let's try fitting it in the DP context

We need to encode the input problem and the proof for the
DP table values

The first part is easy, we re-formulate the knapsack as a
pseudo-Boolean optimization problem:

2x1 +4x, + 7x3 +10x, - max

x1 # 3%, +5x3 +7x, <8

But how to fit the DP table on the proof framework?



Modeling DP states in the proof

Column: x; + 3x, < 4

Entry: 2x; + 4x, < 6

For any feasible solution, x; + 3x, < 4 = 2x; + 4x, < 6 holds



Modeling DP states in the proof

Column: x; + 3x, < 4

Entry: 2x; + 4x, < 6

Weight bound

For any feasible solution,@ + 3x, > 9/ 2x1 + 4x, < 6 holds




Modeling DP states in the proof

Column: x; + 3x, < 4

Entry: 2x; + 4x, < 6

Weight bound

For any feasible solution,@ Vv PZ holds



Interlude: VeriPB

A proof system and a checker for pseudo-Boolean problems

» Strengthening rules for reasoning without loss of optimality:
* Introducing new variables
« Symmetry breaking
« Dominance reasoning
e ...and many more!

VeriPB: The Easy Way to Make Your Combinatorial Search Algorithm Trustworthy (Gocht, McCreesh, Nordstrém, 2020)



Modeling DP states in the proof

Starting from the knapsack DP table, we now have new
variables
Wk o wixy + -+ wexg =w
and
Ppk ©PD1X1 + T PpX S P

» For each P(w, k) = p, we want declare Wy, V BY

» Left term is false for the whole knapsack, and Py is an
objective bound we are looking for

...and how do you justify W5, v Pf?



Modeling DP transitions in the proof

True if WilvP;..

Derive an implication (W3 v P}) A (Wd v Py) = (WZ v P?)



How well does this work?

« Enabling proof logging = writing a few lines to a file per DP
entry

* Verifying the log is super-linear w.r.t. the number of steps
* Verifying kernel proofs scales linearly



Wrap-up

% An approach for encoding states and justifying transitions in VeriPB

Low-maintenance technique

What is next?

Little performance overhead
Directly maps to the DP computation
No need for a separate proof system!

Engineering improvements
Decision diagram use cases



VeriPB is general
enough to capture
diverse inference

techniques




