

CP 2024, Girona

Strengthening Relaxed Decision Diagrams for Maximum Independent Set Problem: Novel Variable Ordering and Merge Heuristics

Mohsen Nafar and Michael Römer

Decision Analytics Group

Department of Management Science and Business Analytics

Bielefeld University

UNIVERSITÄT BIELEFELD

Faculty of Business Administration and Economics

Introduction

Decision Diagrams (Exact)

- a graphical representation of the solution space
- generic: require a Dynamic Programming formulation
- exponential size

Approximate Decision Diagrams (restricted and relaxed)

- linear size
- obtain (combinatorial) primal and dual bounds
- put in generic exact algorithms (e.g. B&B or P&B)
- quality of the bounds depend on heuristic strategies
 for 1. node selection and 2. variable ordering

Maximum Independent Set Problem (MISP)

- **NP-hard** combinatorial problem
- Problem: Given a graph G = (V, E), find the largest I ∈ V subset of its vertices such that ∀ v, u ∈ I, (u, v) ∉ E
- IP formulation:
- $\begin{array}{ll} Maximize & \sum_{v \in V} x_v \\ \text{S.t.} & x_u + x_v \leq 1, \forall \ (u,v) \in E \\ & x_v \in \ \{0,1\} \end{array}$

• A gentle introduction:

Learning more about Decision Diagrams for Optimization

TUTORIALS IN
OPERATIONS RESEARCH
INFORMS 2024

© 2024 INFORMS | ISBN 978-0-XXXXXX-X-X

An Introduction to Decision Diagrams for								
Optimizat	ion			• • •			· · · · · · · · · · · · · · · · · · ·	
<i>Willem-Jan van</i> Tepper School of Bu	, Hoeve isiness, Carne	egie Mellon U	University, v	anhoeve@an	drew.cmu.ed	i lu	· · · · · · · · · · · · · · · · · · ·	
		5		· · · · · · · · · · · · · · · ·	•	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
							· · · · · · · · · · · · · · · · · · ·	
Home > INFORM	S Journal on C	omputing >	Vol. 34, No. 4	• >				

• A survey:

Decision Diagrams for Discrete Optimization: A Survey of Recent Advances

Margarita P. Castro 삗, Andre A. Cire 🕩, J. Christopher Beck 🕩

Published Online: 22 Mar 2022 | https://doi.org/10.1287/ijoc.2022.1170

Some Decision Diagram based Solvers

Faculty of Business Administration and Economics

DDO, a Generic and Efficient Framework for MDD-based Optimization

By Xavier Gillard, Pierre Schaus, Vianney Coppé

Developed in Rust

Peal-and-Bound: Solving Discrete Optimization Problems with Decision Diagrams and Separation

PhD Thesis by Isaac Rudich (August 2024)

Developed in Julia

UNIVERSITÄT BIELEFELD

UNIVERSITÄT BIELEFELD

Dual Bounds via Relaxed Decision Diagrams

- given a maximum permitted width W
- if the width of a layer exceeds W: merge
 nodes until W is respected
- to obtain the state of the merged nodes, apply a problem-specific merge operation
 (⊕) that ensures a valid relaxation:

For MISP: $\bigoplus = \bigcup$ *i.e.* $S_1 \bigoplus S_2 \bigoplus \cdots \bigoplus S_k = S_1 \cup S_2 \cup \cdots \cup S_k$

The error (hence quality of the bounds) depends on:

1. node selection, 2. variable ordering

Merging nodes introduces errors

How can we control (decrease) the error?

Some Related Works on Variable Ordering

Using Machine Learning

- using Reinforcement Learning (Cappart et. al 2019, 2021, 2023) [MISP]
- Algorithm selection (Karahalios and van Hoeve 2021)

Classical methods (no maching learning)

- generic: look-ahead (Bergman et al. 2016, book)
- specific [MISP]: state information, i.e. MIN (Bergman et al. 2016, book)

This paper:

→use graph-theoretical information from induced subgraphs corresponding to states

Some Related Works on Node Selection

Strategies based on Sorting

(keep the best W-1 nodes, merge the rest)

- by objective function value (SO)
- using state information
- using binary classifiers, look-ahead (Frohner and Raidl 2019) [MISP]
- tie-breaking strategies for nodes with identical values (Frohner and Raidl 2020) [MISP]

Strategies based on Grouping

(group nodes according to state similarity)

- using labeling functions (Horn et al. 2021)
- using problem-specific distances (de Weerdt et al.
 2021)
- using unsupervised clustering (Nafar and Römer 2024)
- approximate equivalence using lookahead, merge and reduce (Nafar and Römer 2024)

This paper:

\rightarrow use **Border Tie** (BT) merging for improving the **node selection**

Errors in relaxed DDs for MISP

Faculty of Business Administration and Economics

• Errors in a merged node is a "two-sided" over-approximation of all the nodes in the merge:

Relaxed DDs for MISP instance

Faculty of Business Administration and Economics

UNIVERSITÄT BIELEFELD

Nafar, Römer | Strengthen Relaxed Decision Diagram for MISP: Novel variable ordering and Merge Heuristic

Current Degree Sum: CDS Variable Ordering

Faculty of Business Administration and Economics

UNIVERSITÄT BIELEFELD

Relaxed DD for MISP using CDS variable ordering

Faculty of Business Administration and Economics

and Economics

Node Selection in relaxed DDs for MISP

Definition 1. (Border Tie). Let the nodes in a layer of a DD be sorted according to some criterion C and SortC be its corresponding sorted list, and let W be the given maximum width. A subsequence of SortC in which all nodes have the same criterion value and which includes SortC [W - 1] and SortC [W] is called a Border Tie.

- 1. keep the best W-1 nodes according to objective value
- 2. merge the rest

- 1. keep the best W-1 nodes according to objective value
- 2. merge border tie nodes (if any)
- 3. merge the rest (if any)

Computational Results: Gap-Time (Dual bounds)

- random graph instances, 20 instance per density each with 100 vertices
- Comparing the bounds obtained with our approachs to those with the standard approachs

Computational Results: DD Sizes

Faculty of Business Administration and Economics

• SO vs BT: smaller DD + more merged nodes, but better dual bounds: Success?!

• MIN vs CDS: control the diversity of the states to reduce the destructive effect of merge: Success?!

Computational Results: Branch-and-Bound

Faculty of Business Administration and Economics

Density	Time (Seconds)								
	(MIN,SO)	$(\mathbf{CDS}, \mathrm{SO})$	(MIN, \mathbf{BT})	$(\mathbf{CDS}, \mathbf{BT})$					
0.1	872.3	821.9	445.8	320.9					
0.2	126.4	94.0	85.5	56.4					
0.3	31.0	26.8	24.3	17.0					
0.4	10.1	9.3	8.6	5.9					
0.5	4.3	3.5	4.0	2.5					
0.6	1.92	1.70	1.57	1.4					
0.7	1.11	1.01	0.93	0.89					
0.8	0.73	0.70	0.81	0.66					
0.9	0.60	0.56	0.65	0.61					

• Any combination containing **BT** or **CDS** or both is better than (MIN,SO)

Density	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	Average
$(\mathbf{CDS}, \mathrm{SO})$	5.7	25.61	13.42	8.4	18.3	11.4	9.0	4.1	6.6	11.43
(MIN, BT)	48.8	32.3	21.4	15.6	6.2	18.2	16.2	-10.9	-8.3	15.52
$(\mathbf{CDS}, \mathbf{BT})$	63.2	55.3	45.2	42.0	40.6	25.52	19.8	9.5	-1.6	33.30

Computational Results: Branch-and-Bound

(MIN,**BT**) better **bounds** and **solution times** than (**CDS**,SO), but more subproblems to solve: **good quality bounds is not the only factor?!**

Hypothesis: the intuitions behind the design of **CDS** (more intersections with optimal solutions)

Density	Node Size (Sub-problem Solved in B&B)							
	(MIN,SO)	(CDS,SO)	(MIN, BT)	(CDS,BT)				
0.1	63880	39051	34183	17150				
0.2	15454	6623	9088	3816				
0.3	5906	3053	3830	1700				
0.4	2609	1581	1814	802				
0.5	1452	796	947	450				
0.6	702	397	440	266				
0.7	399	256	283	195				
0.8	291	210	245	173				
0.9	247	174	224	178				

(CDS,BT): benefits of both, (good bounds, more intersections): solved subproblems reduced by 50%

Density	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	Average
$(\mathbf{CDS}, \mathrm{SO})$	38.8	57.1	48.3	39.4	45.2	43.3	35.7	27.7	29.6	40.6
(MIN, BT)	46.4	41.1	35.1	30.4	34.7	37.3	29.0	15.8	9.3	31.0
(CDS,BT)	73.1	75.30	71.2	69.2	68.9	62.0	51.0	40.3	27.6	59.8

- We proposed for MISP:
 - a novel variable ordering approach which is based-on graph theoretical information obtained from induced subgraphs corresponding to states
 - a new tie-based node selection approach
- These simple ideas yield considerably stronger dual bounds than the standard and most commonly used approaches
- As was shown in multiple previous papers, better bounds translate into faster exact algorithms such as branch-and-bound

Using Clustering to Strengthen Decision Diagram Bounds for Discrete Optimization. AAAI 2024

Lookahead, Merge and Reduce for Compiling Relaxed Decision Diagrams for Optimization. *CPAIOR 2024*

Strengthening Relaxed Decision Diagrams for Maximum Independent Set Problem: Novel Variable Ordering and Merge Heuristics. *CP 2024*