

Structure-Guided Local Improvement for Maximum Satisfiability

André Schidler and Stefan Szeider

Algorithms and Complexity Group, TU Wien, Vienna, Austria

The 30th International Conference on Principles and Practice of Constraint Programming, September 2–6, 2024, Girona, Catalonia

Der Wissenschaftsfonds.

VIENNA SCIENCE AND TECHNOLOGY FUND

One-Shot Encodings

Limits

- Encoding size if often too large to do a oneshot encoding
- Even if one-shot encoding is possible, solvers sometimes perform better on a smaller instance

SLIM (SAT-based Local Improvement)

Compute a heuristic solution

local selection strategy to decide where and how large to select (*budget*)

select a local part of the instance

more constrained, to ensure replacement consistency

create the corresponding local instance

use a *local timeout* solve not necessarily optimally or until UNSAT

solve the local instance with a solver

works due to the additional constraints

replace even if new solution is not better

fit the local solution into the global solution

local parts not necessarily disjoint

Main difference between SLIM and LNS is that the local part is highly structured

until a global TO is reached, or no improvement possible

SLIM Showcases

Problem	Local Solver	
Branch-width	SAT	
Tree-width	SAT	
Tree-depth	MaxSAT	
BN Structure Learning	MaxSAT	Peruven
Decision Trees	SAT	
Graph Coloring	SAT	
Circuit Minimisation	QBF/SAT	

IVIAXSAI IVIAXSAI

Paper

Lodha, Ordyniak, Sz. (SAT'17, ToCL'19)

Fichte, Lodha, Sz. (SAT'17)

Peruvemba Ramaswamy, Sz. (CP'20)

nba Ramaswamy, Sz. (AAAI'21, NeurIPS'21, UAI'22)

Schidler, Sz. (AAAI'21, JAIR'24)

Schidler, Sz. (JEA'22)

Reichl, Slivovsky, Sz. (AAAI'23, SAT'24)

This paper

Maximum Satisfiability (MaxSAT) Solvers

- indispensable tools with an expansive range of applications in combinatorial optimization
- Instance: set of Boolean hard clauses + set of soft clauses + weight function for soft clauses
- Task: find an assignment to the variables that satisfies all hard clauses and maximizes the sum of weights of satisfied soft clauses (or equivalently minimizes the sum of weights of non-satisfied soft clauses)
- What we consider here is partial weighted MaxSAT; special case: unweighted instances, where all soft clauses have unit weight 1.
- Exact solvers: aim at finding an optimal solution
- Anytime solvers: aim at providing good solutions within a given time bound

MaxSAT-LNS [Hickey+Bacchus 2022]

- Find a suboptimal solution with an anytime solver
- the repeatedly select random subset of fixed variables and use exact solver to improve

MaxSLIM this paper

- Find a suboptimal solution with an anytime solver
- the repeatedly select subset of variables
 based on the graphical structure of the instance and use an exact solver to improve

Local Instances

F

 $F_L = F[\tau_L]$

local instance over free variables ${\mathcal T}$

17/35

Local Instance Selection

- use an the annotated version of the incidence graph (bipartite graph between variables and clauses)
- start with $L_0 = \{v\}$ and extend $L_0 \subset L_1 \subset \ldots \subset L_i$ while free vars $\leq b$
- We propose several
 - selection strategies based on
 - several metrics try to identify variables and soft clauses that have a high probability of contributing to an improvement, using a score function s

Variable Strategy L_{i+1}

Fast Strategy

no metric

Metrics

- Unit Metric: score(v) = (-1) number of clauses that become unsatisfied when value of v gets flipped (multiply by weight for soft clauses).
- Satisfying Metric: score(v) = is small if v is in an unsatisfied soft clause, but
 value of v cannot be flipped due to a hard clause.
- NuWLS Metric: uses the initial weighting scheme for soft clauses of the NuWLS solver. score(v) = sum of weights of all unsatisfied soft clauses v appears in that are do not get unsatisfied if value of v gets flipped.

Configuration and Instances

- Global solver: NuWLS-c (winner of the MaxSAT Evaluation 2023)
- Local solver: own core-guided solver based on the OLL algorithm
- Local timeout: 55 seconds (local selection plus solving within a minute)
- Budget: initial b := n/10, every five 10 consecutive failures of improvement b += n/10
- Default: Variable Strategy with Unit Metric for unweighted, NuWLS Metric for weighted instances.
- Instances: 2023 MaxSAT Evaluation's anytime track (179 unweighted and 160 weighted)
- Seeds: three runs per solver and configuration
- Scoring system: as in MaxSAT Evaluation (best solver gets score 1, other solver gets (best+1)/(solver+1)

30m timeout

60m timeout

initial solution with NuWLS-c

Improvement with MaxSLIM or MaxSAT-LNS

we disregard all instances where no initial solution could be found

Q1: MaxSLIM vs MaxSAT-LNS

NuWLS	
NuWLS	

unweighted	MaxSLIM	MaxLNS
5min	0.887	0.871
30min	0.919	0.907
60min	0.923	0.912

LNS

weighted	MaxSLIM	MaxLNS
5min	0.833	0.818
30min	0.911	0.894
60min	0.917	0.899

dark blue: implied by UP; light blue: free blue: candidate variables;

Q2: MaxSLIM vs NnWLS-c

.	۱ <i>۸</i> / I	C
NU	VVL	_2

unweighted	MaxSLIM	NuWLS-c
5min	0.887	0.885
30min	0.919	0.917
60min	0.923	0.918

SLIM

NuWLS

weighted	MaxSLIM	NuWLS-c
5min	0.833	0.868
30min	0.911	0.889
60min	0.917	0.906

Q3: MaxSLIM vs Other Solvers (unweighted)

NuWLS

unweig	hted	MaxSLIM	MaxLNS	NuWLS	TT-OpenWI	Loandra	NoSAT
Emin	score	0.887	0.871	0.885	0.876	0.820	0.586
5min k	best	42	32	33	32	42	15
20	score	0.919	0.907	0.917	0.907	0.892	0.591
30min	best	39	36	30	28	41	13
COmeire	score	0.923	0.912	0.918	0.913	0.900	0.601
60min	best	41	39	30	29	41	14

SLIM

Other

Q3: MaxSLIM vs Other Solvers (weighted)

NuWLS

weigh	nted	MaxSLIM	MaxLNS	NuWLS	TT-OpenWI	Loandra	NoSAT
E main	score	0.833	0.818	0.868	0.872	0.843	0.319
5min b	best	29	32	31	22	35	0
30min be	score	0.911	0.894	0.889	0.888	0.893	0.338
	best	42	34	17	17	33	0
CO rrection	score	0.917	0.899	0.906	0.897	0.898	0.341
60min	best	41	35	19	20	34	0

SLIM

Other

Q4: Strategies and Metrics (unweighted)

unweighted 5min Unit Metric	score	Improved	unweighted 5min Variable Strategy	score	Improved
Variable Strategy	0.887	97	Unit Metric	0.887	97
5-Adjacency Strategy	0.887	94	NuWLS Metric	0.885	97
Fast Strategy	0.873	79	Satisfying Metric	0.883	96

Q4: Strategies and Metrics (weighted)

weighted 5min NuWLS Metric	score	Improved	weighted 5min Variable Strategy	score	Improve
Variable Strategy	0.833	105	Unit Metric	0.823	105
5-Adjacency Strategy	0.822	107	NuWLS Metric	0.833	107
Fast Strategy	0.817	99	Satisfying Metric	0.824	99

Summary of results

- utilizing the graphical structure of MaxSAT instances pays off
- in particular for longer timeouts
- we have several strategies, metrics, and parameters that allow for further tuning to particular applications
- future work: interleaving local and global solving
- requires hot start of global solver

Future work: interleaving

Problem	Local Solver	
Branch-width	SAT	
Tree-width	SAT	
Tree-depth	MaxSAT	
BN Structure Learning	MaxSAT	Peru
Decision Trees	SAT	
Graph Coloring	SAT	
Circuit Minimisation	QBF/SAT	

Paper

Lodha, Ordyniak, Sz. (SAT'17, ToCL'19)

Fichte, Lodha, Sz. (SAT'17)

Peruvemba Ramaswamy, Sz. (CP'20)

vemba Ramaswamy, Sz. (AAAI'21, NeurIPS'21, UAI'22)

Schidler, Sz. (AAAI'21, JAIR'24)

Schidler, Sz. (JEA'22)

Reichl, Slivovsky, Sz. (AAAI'23, SAT'24)

Circuit Minimization

[Reichl, Slivovsky, Sz. SAT'24]

Summary of results

- utilizing the graphical structure of MaxSAT instances pays off
- in particular for longer timeouts
- we have several strategies, metrics and parameters that allow for further tuning to particular applications
- future work: interleaving local and global solving
- requires hot start of global solver

PhD position in Neurosymbolic Algorithmics

- Austrian Cluster of Excellence "Bilateral AI"
- About 50 Positions all over Austria
- Contact me for details

https://www.vcla.at/2024/08/open-positions-cluster-of-excellence

