## The complexity of symmetry breaking beyond lex-leader

#### Markus Anders Sofia Brenner Gaurav Rattan

Technische Universität Darmstadt

CP 2024

September 6, 2024



Example

$$F = (x_1 \lor x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor \neg x_1) \land (x_1 \lor x_3 \lor \neg x_2)$$

#### Example

$$\mathsf{F} = (x_1 \lor x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor \neg x_1) \land (x_1 \lor x_3 \lor \neg x_2)$$

#### Example

$$\mathsf{F} = (x_1 \lor x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor \neg x_1) \land (x_1 \lor x_3 \lor \neg x_2)$$

### Problem (SAT) **Input:** CNF formula F on variables $\{x_1, \ldots, x_n\}$ and their negations **Output:** Does F have a satisfying assignment?

#### Example

$$F = (x_1 \lor x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor \neg x_1) \land (x_1 \lor x_3 \lor \neg x_2) \qquad \varphi = (x_1, x_2)$$

### Problem (SAT)

**Input:** CNF formula F on variables  $\{x_1, \ldots, x_n\}$  and their negations **Output:** Does F have a satisfying assignment?

#### Example

$$F = (x_1 \lor x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor \neg x_1) \land (x_1 \lor x_3 \lor \neg x_2) \qquad \varphi = (x_1, x_2)$$
$$\varphi(F) = (x_2 \lor x_1 \lor \neg x_3) \land (x_1 \lor x_3 \lor \neg x_2) \land (x_2 \lor x_3 \lor \neg x_1)$$

#### Problem (SAT)

**Input:** CNF formula F on variables  $\{x_1, \ldots, x_n\}$  and their negations **Output:** Does F have a satisfying assignment?

#### Example

$$F = (x_1 \lor x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor \neg x_1) \land (x_1 \lor x_3 \lor \neg x_2) \qquad \varphi = (x_1, x_2)$$
$$\varphi(F) = (x_1 \lor x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor \neg x_1) \land (x_1 \lor x_3 \lor \neg x_2)$$

#### Problem (SAT)

**Input:** CNF formula F on variables  $\{x_1, \ldots, x_n\}$  and their negations **Output:** Does F have a satisfying assignment?

#### Example

$$F = (x_1 \lor x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor \neg x_1) \land (x_1 \lor x_3 \lor \neg x_2) \qquad \varphi = (x_1, x_2)$$
  
$$\varphi(F) = (x_1 \lor x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor \neg x_1) \land (x_1 \lor x_3 \lor \neg x_2) = F$$
  
Problem (SAT)

**Input:** CNF formula F on variables  $\{x_1, \ldots, x_n\}$  and their negations **Output:** Does F have a satisfying assignment?

#### Example

$$F = (x_1 \lor x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor \neg x_1) \land (x_1 \lor x_3 \lor \neg x_2) \qquad \varphi = (x_1, x_2)$$

#### Problem (SAT)

- ▶ a symmetry of *F* is a permutation of  $\{x_1, \ldots, x_n\}$  preserving *F*
- symmetry group  $Aut(F) \leq Sym(x_1, \ldots, x_n)$

#### Example

$$F = (x_1 \lor x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor \neg x_1) \land (x_1 \lor x_3 \lor \neg x_2) \qquad \varphi = (x_1, x_2)$$
  
Aut(F) = Sym(x\_1, x\_2, x\_3)

#### Problem (SAT)

- ▶ a symmetry of *F* is a permutation of  $\{x_1, \ldots, x_n\}$  preserving *F*
- symmetry group  $Aut(F) \leq Sym(x_1, \ldots, x_n)$

#### Example

$$egin{aligned} \mathcal{F} &= (x_1 ee x_2 ee \neg x_3) \wedge (x_2 ee x_3 ee \neg x_1) \wedge (x_1 ee x_3 ee \neg x_2) & arphi &= (x_1, x_2) \ arphi &= ((1, 0, 0)) = (0, 1, 0) \end{aligned}$$

#### Problem (SAT)

- ▶ a symmetry of *F* is a permutation of  $\{x_1, \ldots, x_n\}$  preserving *F*
- symmetry group  $Aut(F) \leq Sym(x_1, \ldots, x_n)$

#### Example

$$egin{aligned} \mathcal{F} &= (x_1 ee x_2 ee \neg x_3) \wedge (x_2 ee x_3 ee \neg x_1) \wedge (x_1 ee x_3 ee \neg x_2) & arphi &= (x_1, x_2) \ arphiig((1, 0, 0)) &= (0, 1, 0) \end{aligned}$$

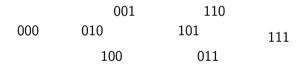
#### Problem (SAT)

- ▶ a symmetry of *F* is a permutation of  $\{x_1, \ldots, x_n\}$  preserving *F*
- Symmetry group  $Aut(F) \leq Sym(x_1, \ldots, x_n)$
- $\theta, \theta'$  are called symmetric if  $\theta' = \varphi(\theta)$  for  $\varphi \in Aut(F)$

### Example

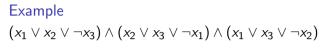
$$(x_1 \lor x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor \neg x_1) \land (x_1 \lor x_3 \lor \neg x_2)$$

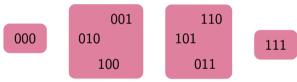
Example  
$$(x_1 \lor x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor \neg x_1) \land (x_1 \lor x_3 \lor \neg x_2)$$



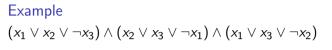
## Example $(x_1 \lor x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor \neg x_1) \land (x_1 \lor x_3 \lor \neg x_2)$

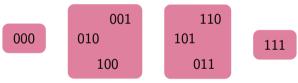






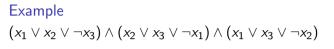
Fact: symmetric assignments have the same truth value

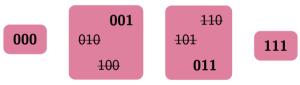




Fact: symmetric assignments have the same truth value

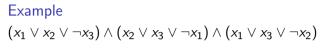
test only one element per orbit of symmetric assignments

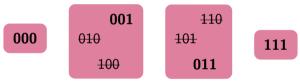




Fact: symmetric assignments have the same truth value

test only one element per orbit of symmetric assignments





**Fact:** symmetric assignments have the same truth value

test only one element per orbit of symmetric assignments

Static symmetry breaking: add clauses to falsify all but one assignment per orbit

$$\mathsf{F} = (x_1 \lor x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor \neg x_1) \land (x_1 \lor x_3 \lor \neg x_2)$$

- $F = (x_1 \lor x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor \neg x_1) \land (x_1 \lor x_3 \lor \neg x_2)$ 
  - symmetry group  $Aut(F) = Sym(x_1, x_2, x_3)$

- $F = (x_1 \lor x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor \neg x_1) \land (x_1 \lor x_3 \lor \neg x_2)$ 
  - symmetry group  $Aut(F) = Sym(x_1, x_2, x_3)$
  - Symmetry breaking predicate  $P = x_1 \le x_2 \le x_3$ , where  $x_1 \le x_2 := \neg x_1 \lor x_2$

- $F' = (x_1 \lor x_2) \land (x_2 \lor x_3) \land (x_1 \lor x_3)$ 
  - symmetry group  $Aut(F') = Sym(x_1, x_2, x_3)$
  - Symmetry breaking predicate  $P = x_1 \le x_2 \le x_3$ , where  $x_1 \le x_2 := \neg x_1 \lor x_2$

**Observation:** symmetry breaking predicate (usually) only depends on Aut(F)Example

- $F' = (x_1 \lor x_2) \land (x_2 \lor x_3) \land (x_1 \lor x_3)$ 
  - symmetry group  $Aut(F') = Sym(x_1, x_2, x_3)$
  - Symmetry breaking predicate  $P = x_1 \le x_2 \le x_3$ , where  $x_1 \le x_2 := \neg x_1 \lor x_2$

### Problem (Symmetry breaking)

Given  $G \leq \text{Sym}(x_1, \ldots, x_n)$ , compute a symmetry breaking CNF predicate for G.

**Observation:** symmetry breaking predicate (usually) only depends on Aut(F)Example

- $F' = (x_1 \lor x_2) \land (x_2 \lor x_3) \land (x_1 \lor x_3)$ 
  - symmetry group  $Aut(F') = Sym(x_1, x_2, x_3)$
  - Symmetry breaking predicate  $P = x_1 \le x_2 \le x_3$ , where  $x_1 \le x_2 := \neg x_1 \lor x_2$

### Problem (Symmetry breaking)

Given  $G \leq \text{Sym}(x_1, \ldots, x_n)$ , compute a symmetry breaking CNF predicate for G.

#### Weaker variant

Given  $G \leq \text{Sym}(x_1, \ldots, x_n)$ , compute a symmetry breaking circuit for G.

**Observation:** symmetry breaking predicate (usually) only depends on Aut(F)Example

- $F' = (x_1 \lor x_2) \land (x_2 \lor x_3) \land (x_1 \lor x_3)$ 
  - symmetry group  $Aut(F') = Sym(x_1, x_2, x_3)$
  - Symmetry breaking predicate  $P = x_1 \le x_2 \le x_3$ , where  $x_1 \le x_2 := \neg x_1 \lor x_2$

### Problem (Symmetry breaking)

Given  $G \leq \text{Sym}(x_1, \ldots, x_n)$ , compute a symmetry breaking CNF predicate for G.

#### Weaker variant

Given  $G \leq \text{Sym}(x_1, \ldots, x_n)$ , compute a symmetry breaking circuit for G.

the circuit is even allowed to introduce additional variables

### Lex-leader constraints

**Idea**: compute a CNF predicate only true of the lexleader in each orbit of symmetric assignments ▶ in practice: incomplete lex-leader constraints

### Theorem (Crawford et. al., 1997)

Computing for any formula F a predicate only true of the lex-leader in each orbit of symmetric assignments is NP-hard.

- This also holds for
  - restricted classes of groups
  - orders similar to lex-leader

[Luks-Roy, 2004] [Katsirelos et. al. 2010, Walsh 2020+]

# Beyond lex-leader

- wreath symmetries using the global cardinality constraint together with lex-leader constraints
- constraints for graph problems similar to NAUTY
- minimal SAT symmetry breaking constraints for small groups [Heule 2019]

#### Goal

Complexity classification for computing symmetry breaking predicates

- for groups, and
- independently of the method to choose representatives.

### Questions

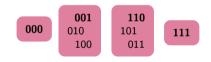
- How does symmetry breaking relate to problems such as graph isomorphism?
- Find a general strategy to show hardness.

[Flener et. al. 2009]

[Codish et. al. 2016]

### Problem (String canonization)

Given  $G \leq \text{Sym}(n)$  and  $\sigma \in \{0,1\}^n$ , find a canonical representative in the orbit of  $\sigma$  (consistent among all possible inputs).



### Problem (String canonization)

Given  $G \leq \text{Sym}(n)$  and  $\sigma \in \{0,1\}^n$ , find a canonical representative in the orbit of  $\sigma$  (consistent among all possible inputs).

### Problem (Graph canonization)

Given a graph  $\Gamma$ , compute the canonical representative in the isomorphism class of  $\Gamma$  (consistent among all possible inputs).



### Problem (String canonization)

Given  $G \leq \text{Sym}(n)$  and  $\sigma \in \{0,1\}^n$ , find a canonical representative in the orbit of  $\sigma$  (consistent among all possible inputs).

#### Problem (Graph canonization)

Given a graph  $\Gamma$ , compute the canonical representative in the isomorphism class of  $\Gamma$  (consistent among all possible inputs).

### Problem (Graph isomorphism)

Given two graphs  $\Gamma_1$  and  $\Gamma_2$ , decide whether  $\Gamma_1$  and  $\Gamma_2$  are isomorphic.

# Complexity landscape of graph isomorphism

## Problem (String canonization)

Given  $G \leq \text{Sym}(n)$  and  $\sigma \in \{0,1\}^n$ , find a canonical representative in the orbit of  $\sigma$  (consistent among all possible inputs).

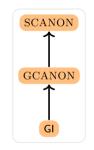
#### Problem (Graph canonization)

Given a graph  $\Gamma$ , compute the canonical representative in the isomorphism class of  $\Gamma$  (consistent among all possible inputs).

### Problem (Graph isomorphism)

Given two graphs  $\Gamma_1$  and  $\Gamma_2$ , decide whether  $\Gamma_1$  and  $\Gamma_2$  are isomorphic.

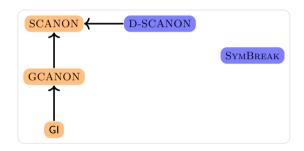






#### Problem (Decision SCANON)

Given  $G \leq \text{Sym}(n)$  and  $\sigma \in \{0,1\}^n$ , decide whether  $\sigma$  is the canonical representative in its orbit.

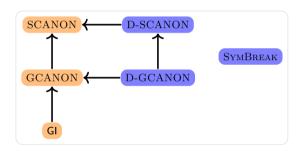


#### Problem (Decision SCANON)

Given  $G \leq \text{Sym}(n)$  and  $\sigma \in \{0,1\}^n$ , decide whether  $\sigma$  is the canonical representative in its orbit.

## Problem (Decision GCANON)

Given a graph  $\Gamma$ , decide whether  $\Gamma$  is the canonical representative in its isomorphism class.

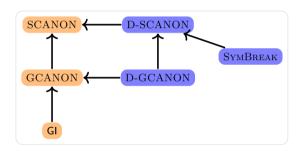


#### Problem (Decision SCANON)

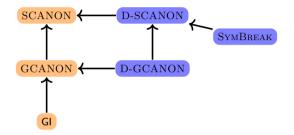
Given  $G \leq \text{Sym}(n)$  and  $\sigma \in \{0,1\}^n$ , decide whether  $\sigma$  is the canonical representative in its orbit.

## Problem (Decision GCANON)

Given a graph  $\Gamma$ , decide whether  $\Gamma$  is the canonical representative in its isomorphism class.



## Quasipolynomial bound

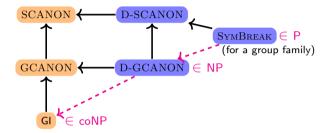


#### Theorem (Babai, 2016)

SCANON can be solved in quasipolynomial time.

**Consequence:** use this there is a quasipolynomial time algorithm to produce a symmetry breaking circuit of quasipolynomial size

## Barriers for symmetry breaking



#### Theorem (Anders-B.-Rattan, 2024)

D-GCANON  $\in NP$  implies GI  $\in$  coNP. Which is a major unsolved problem!

**Strategy for showing hardness:** given a symmetry breaking circuit for a group family, use it to show D-GCANON  $\in NP$ .

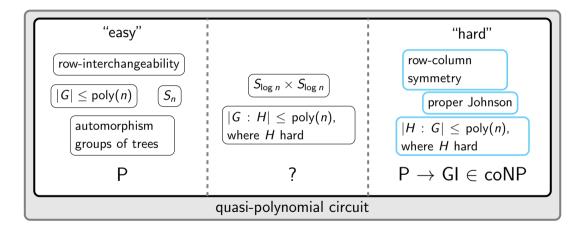
## Row-column symmetries and Johnson symmetries



### Theorem (Anders-B.-Rattan, 2024)

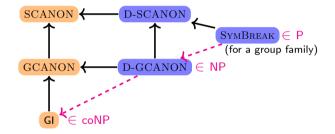
Suppose that a symmetry breaking circuit for row-column symmetries or proper Johnson symmetries can be efficiently computed. Then  $GI \in coNP$ .

## Outlook: group-based complexity classification



## Muchas gracias - thank you!





# Advertisement

https://github.com/markusa4/satsuma

