The complexity of symmetry breaking beyond lex-leader

Markus Anders Sofia Brenner Gaurav Rattan

Technische Universität Darmstadt

CP 2024

September 6, 2024

Example

$$
F = (x_1 \vee x_2 \vee \neg x_3) \wedge (x_2 \vee x_3 \vee \neg x_1) \wedge (x_1 \vee x_3 \vee \neg x_2)
$$

Example

$$
F = (x_1 \vee x_2 \vee \neg x_3) \wedge (x_2 \vee x_3 \vee \neg x_1) \wedge (x_1 \vee x_3 \vee \neg x_2)
$$

Problem (SAT) **Input:** CNF formula F on variables $\{x_1, \ldots, x_n\}$ and their negations **Output:** Does F have a satisfying assignment?

Example

$$
F = (x_1 \vee x_2 \vee \neg x_3) \wedge (x_2 \vee x_3 \vee \neg x_1) \wedge (x_1 \vee x_3 \vee \neg x_2)
$$

Problem (SAT) **Input:** CNF formula F on variables $\{x_1, \ldots, x_n\}$ and their negations **Output:** Does F have a satisfying assignment?

Example

$$
F = (x_1 \vee x_2 \vee \neg x_3) \wedge (x_2 \vee x_3 \vee \neg x_1) \wedge (x_1 \vee x_3 \vee \neg x_2) \qquad \varphi = (x_1, x_2)
$$

Problem (SAT) **Input:** CNF formula F on variables $\{x_1, \ldots, x_n\}$ and their negations **Output:** Does F have a satisfying assignment?

Example

$$
F = (x_1 \vee x_2 \vee \neg x_3) \wedge (x_2 \vee x_3 \vee \neg x_1) \wedge (x_1 \vee x_3 \vee \neg x_2) \qquad \varphi = (x_1, x_2)
$$

$$
\varphi(F) = (x_2 \vee x_1 \vee \neg x_3) \wedge (x_1 \vee x_3 \vee \neg x_2) \wedge (x_2 \vee x_3 \vee \neg x_1)
$$

Problem (SAT)

Input: CNF formula F on variables $\{x_1, \ldots, x_n\}$ and their negations **Output:** Does F have a satisfying assignment?

Example

$$
F = (x_1 \vee x_2 \vee \neg x_3) \wedge (x_2 \vee x_3 \vee \neg x_1) \wedge (x_1 \vee x_3 \vee \neg x_2) \qquad \varphi = (x_1, x_2)
$$

$$
\varphi(F) = (x_1 \vee x_2 \vee \neg x_3) \wedge (x_2 \vee x_3 \vee \neg x_1) \wedge (x_1 \vee x_3 \vee \neg x_2)
$$

Problem (SAT)

Input: CNF formula F on variables $\{x_1, \ldots, x_n\}$ and their negations **Output:** Does F have a satisfying assignment?

Example

$$
F = (x_1 \lor x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor \neg x_1) \land (x_1 \lor x_3 \lor \neg x_2) \qquad \varphi = (x_1, x_2)
$$
\n
$$
\varphi(F) = (x_1 \lor x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor \neg x_1) \land (x_1 \lor x_3 \lor \neg x_2) = F
$$
\n
$$
\text{Problem (SAT)}
$$
\nInput: CNF formula F on variables $\{x_1, \ldots, x_n\}$ and their negations

\nOutput: Does F have a satisfying assignment?

Example

$$
F = (x_1 \vee x_2 \vee \neg x_3) \wedge (x_2 \vee x_3 \vee \neg x_1) \wedge (x_1 \vee x_3 \vee \neg x_2) \qquad \varphi = (x_1, x_2)
$$

Problem (SAT)

Input: CNF formula F on variables $\{x_1, \ldots, x_n\}$ and their negations **Output:** Does F have a satisfying assignment?

- ▶ a symmetry of F is a permutation of $\{x_1, \ldots, x_n\}$ preserving F
- ▶ symmetry group $Aut(F)$ < Sym (x_1, \ldots, x_n)

Example

$$
F = (x_1 \vee x_2 \vee \neg x_3) \wedge (x_2 \vee x_3 \vee \neg x_1) \wedge (x_1 \vee x_3 \vee \neg x_2) \qquad \varphi = (x_1, x_2)
$$

Aut(F) = Sym (x_1, x_2, x_3)

Problem (SAT) **Input:** CNF formula F on variables $\{x_1, \ldots, x_n\}$ and their negations **Output:** Does F have a satisfying assignment?

- ▶ a symmetry of F is a permutation of $\{x_1, \ldots, x_n\}$ preserving F
- ▶ symmetry group $Aut(F)$ < Sym (x_1, \ldots, x_n)

Example

$$
F = (x_1 \vee x_2 \vee \neg x_3) \wedge (x_2 \vee x_3 \vee \neg x_1) \wedge (x_1 \vee x_3 \vee \neg x_2) \qquad \varphi = (x_1, x_2)
$$

$$
\varphi((1,0,0)) = (0,1,0)
$$

Problem (SAT) **Input:** CNF formula F on variables $\{x_1, \ldots, x_n\}$ and their negations **Output:** Does F have a satisfying assignment?

- ▶ a symmetry of F is a permutation of $\{x_1, \ldots, x_n\}$ preserving F
- ▶ symmetry group $Aut(F)$ < Sym (x_1, \ldots, x_n)

Example

$$
F = (x_1 \vee x_2 \vee \neg x_3) \wedge (x_2 \vee x_3 \vee \neg x_1) \wedge (x_1 \vee x_3 \vee \neg x_2) \qquad \varphi = (x_1, x_2)
$$

$$
\varphi((1,0,0)) = (0,1,0)
$$

Problem (SAT)

Input: CNF formula F on variables $\{x_1, \ldots, x_n\}$ and their negations **Output:** Does \overline{F} have a satisfying assignment?

- \triangleright a symmetry of F is a permutation of $\{x_1, \ldots, x_n\}$ preserving F
- ▶ symmetry group $Aut(F)$ < Sym (x_1, \ldots, x_n)
- $\blacktriangleright \theta, \theta'$ are called symmetric if $\theta' = \varphi(\theta)$ for $\varphi \in \text{Aut}(F)$

Example

$$
(x_1 \vee x_2 \vee \neg x_3) \wedge (x_2 \vee x_3 \vee \neg x_1) \wedge (x_1 \vee x_3 \vee \neg x_2)
$$

Example

$$
(x_1 \lor x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor \neg x_1) \land (x_1 \lor x_3 \lor \neg x_2)
$$

Example $(x_1 \vee x_2 \vee \neg x_3) \wedge (x_2 \vee x_3 \vee \neg x_1) \wedge (x_1 \vee x_3 \vee \neg x_2)$

Fact: symmetric assignments have the same truth value

Fact: symmetric assignments have the same truth value

 \triangleright test only one element per orbit of symmetric assignments

Fact: symmetric assignments have the same truth value

 \triangleright test only one element per orbit of symmetric assignments

Fact: symmetric assignments have the same truth value

 \triangleright test only one element per orbit of symmetric assignments

Static symmetry breaking: add clauses to falsify all but one assignment per orbit

Observation: symmetry breaking predicate (usually) only depends on $Aut(F)$

Observation: symmetry breaking predicate (usually) only depends on $Aut(F)$ Example

$$
F = (x_1 \vee x_2 \vee \neg x_3) \wedge (x_2 \vee x_3 \vee \neg x_1) \wedge (x_1 \vee x_3 \vee \neg x_2)
$$

Observation: symmetry breaking predicate (usually) only depends on $Aut(F)$ Example

- $F = (x_1 \vee x_2 \vee \neg x_3) \wedge (x_2 \vee x_3 \vee \neg x_1) \wedge (x_1 \vee x_3 \vee \neg x_2)$
	- ▶ symmetry group $Aut(F) = Sym(x_1, x_2, x_3)$

Observation: symmetry breaking predicate (usually) only depends on $Aut(F)$ Example

- $F = (x_1 \vee x_2 \vee \neg x_3) \wedge (x_2 \vee x_3 \vee \neg x_1) \wedge (x_1 \vee x_3 \vee \neg x_2)$
	- ▶ symmetry group $Aut(F) = Sym(x_1, x_2, x_3)$
	- **▶** symmetry breaking predicate $P = x_1 \le x_2 \le x_3$, where $x_1 \le x_2 := -x_1 \vee x_2$

Observation: symmetry breaking predicate (usually) only depends on $Aut(F)$ Example

 $F' = (x_1 \vee x_2) \wedge (x_2 \vee x_3) \wedge (x_1 \vee x_3)$

- ▶ symmetry group $Aut(F') = Sym(x_1, x_2, x_3)$
- **▶** symmetry breaking predicate $P = x_1 \le x_2 \le x_3$, where $x_1 \le x_2 := -x_1 \vee x_2$

Observation: symmetry breaking predicate (usually) only depends on $Aut(F)$ Example

- $F' = (x_1 \vee x_2) \wedge (x_2 \vee x_3) \wedge (x_1 \vee x_3)$
	- ▶ symmetry group $Aut(F') = Sym(x_1, x_2, x_3)$
	- ▶ symmetry breaking predicate $P = x_1 \le x_2 \le x_3$, where $x_1 \le x_2 := x_1 \vee x_2$

Problem (Symmetry breaking)

Given $G \le Sym(x_1, \ldots, x_n)$, compute a symmetry breaking CNF predicate for G.

Observation: symmetry breaking predicate (usually) only depends on $Aut(F)$ Example

 $F' = (x_1 \vee x_2) \wedge (x_2 \vee x_3) \wedge (x_1 \vee x_3)$

- ▶ symmetry group $Aut(F') = Sym(x_1, x_2, x_3)$
- ▶ symmetry breaking predicate $P = x_1 \le x_2 \le x_3$, where $x_1 \le x_2 := x_1 \vee x_2$

Problem (Symmetry breaking)

Given $G \le Sym(x_1, \ldots, x_n)$, compute a symmetry breaking CNF predicate for G.

Weaker variant

Given $G \leq Sym(x_1, \ldots, x_n)$, compute a symmetry breaking circuit for G.

Observation: symmetry breaking predicate (usually) only depends on $Aut(F)$ Example

- $F' = (x_1 \vee x_2) \wedge (x_2 \vee x_3) \wedge (x_1 \vee x_3)$
	- ▶ symmetry group $Aut(F') = Sym(x_1, x_2, x_3)$
	- **▶** symmetry breaking predicate $P = x_1 \le x_2 \le x_3$, where $x_1 \le x_2 := -x_1 \vee x_2$

Problem (Symmetry breaking)

Given $G \le Sym(x_1, \ldots, x_n)$, compute a symmetry breaking CNF predicate for G.

Weaker variant

Given $G \le \text{Sym}(x_1, \ldots, x_n)$, compute a symmetry breaking circuit for G.

 \blacktriangleright the circuit is even allowed to introduce additional variables

Lex-leader constraints

Idea: compute a CNF predicate only true of the lexleader in each orbit of symmetric assignments

 \times \times × ×

 \triangleright in practice: incomplete lex-leader constraints

Theorem (Crawford et. al., 1997)

Computing for any formula F a predicate only true of the lex-leader in each orbit of symmetric assignments is NP-hard.

- This also holds for
	-
	-

▶ restricted classes of groups **being a set of the contract o** ▶ orders similar to lex-leader [Katsirelos et. al. 2010, Walsh 2020+]

Beyond lex-leader

- \triangleright wreath symmetries using the global cardinality constraint together with lex-leader constraints **in the set of the s**
- ▶ constraints for graph problems similar to NAUTY [Codish et. al. 2016]
- ▶ minimal SAT symmetry breaking constraints for small groups [Heule 2019]

Goal

Complexity classification for computing symmetry breaking predicates

- \blacktriangleright for groups, and
- \blacktriangleright independently of the method to choose representatives.

Questions

- ▶ How does symmetry breaking relate to problems such as graph isomorphism?
- ▶ Find a general strategy to show hardness.

Problem (String canonization)

Given $G \leq Sym(n)$ and $\sigma \in \{0,1\}^n$, find a canonical representative in the orbit of σ (consistent among all possible inputs).

Problem (String canonization)

Given $G \leq Sym(n)$ and $\sigma \in \{0,1\}^n$, find a canonical representative in the orbit of σ (consistent among all possible inputs).

Problem (Graph canonization)

Given a graph Γ, compute the canonical representative in the isomorphism class of Γ (consistent among all possible inputs).

Problem (String canonization)

Given $G \leq Sym(n)$ and $\sigma \in \{0,1\}^n$, find a canonical representative in the orbit of σ (consistent among all possible inputs).

Problem (Graph canonization)

Given a graph Γ, compute the canonical representative in the isomorphism class of Γ (consistent among all possible inputs).

Problem (Graph isomorphism)

Given two graphs Γ_1 and Γ_2 , decide whether Γ_1 and Γ ₂ are isomorphic.

Problem (String canonization)

Given $G \leq Sym(n)$ and $\sigma \in \{0,1\}^n$, find a canonical representative in the orbit of σ (consistent among all possible inputs).

Problem (Graph canonization)

Given a graph Γ, compute the canonical representative in the isomorphism class of Γ (consistent among all possible inputs).

Problem (Graph isomorphism)

Given two graphs Γ_1 and Γ_2 , decide whether Γ_1 and Γ ₂ are isomorphic.

Problem (Decision SCANON)

Given $G \leq Sym(n)$ and $\sigma \in \{0,1\}^n$, decide whether σ is the canonical representative in its orbit.

Problem (Decision SCANON)

Given $G \leq Sym(n)$ and $\sigma \in \{0,1\}^n$, decide whether σ is the canonical representative in its orbit.

Problem (Decision GCANON)

Given a graph Γ, decide whether Γ is the canonical representative in its isomorphism class.

Problem (Decision SCANON)

Given $G \leq Sym(n)$ and $\sigma \in \{0,1\}^n$, decide whether σ is the canonical representative in its orbit.

Problem (Decision GCANON)

Given a graph Γ, decide whether Γ is the canonical representative in its isomorphism class.

Quasipolynomial bound

Theorem (Babai, 2016)

SCANON can be solved in quasipolynomial time.

Consequence: use this there is a quasipolynomial time algorithm to produce a symmetry breaking circuit of quasipolynomial size

Barriers for symmetry breaking

Theorem (Anders-B.-Rattan, 2024)

 $D-GCANON \in NP$ implies $GI \in coNP$. Which is a major unsolved problem!

Strategy for showing hardness: given a symmetry breaking circuit for a group family, use it to show D -GCANON \in NP.

Row-column symmetries and Johnson symmetries

Theorem (Anders-B.-Rattan, 2024)

Suppose that a symmetry breaking circuit for row-column symmetries or proper Johnson symmetries can be efficiently computed. Then $GI \in \text{coNP}$.

Outlook: group-based complexity classification

Muchas gracias - thank you!

Advertisement

<https://github.com/markusa4/satsuma>

