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Symmetries in SAT

Example

F = (x1 ∨ x2 ∨ ¬x3) ∧ (x2 ∨ x3 ∨ ¬x1) ∧ (x1 ∨ x3 ∨ ¬x2)

φ = (x1, x2)

φ(F ) = (x2 ∨ x1 ∨ ¬x3) ∧ (x1 ∨ x3 ∨ ¬x2) ∧ (x2 ∨ x3 ∨ ¬x1)

Problem (SAT)

Input: CNF formula F on variables {x1, . . . , xn} and their negations
Output: Does F have a satisfying assignment?

▶ a symmetry of F is a permutation of {x1, . . . , xn} preserving F

▶ symmetry group Aut(F ) ≤ Sym(x1, . . . , xn)

▶ θ, θ′ are called symmetric if θ′ = φ(θ) for φ ∈ Aut(F )
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Symmetric assignments

Example

(x1 ∨ x2 ∨ ¬x3) ∧ (x2 ∨ x3 ∨ ¬x1) ∧ (x1 ∨ x3 ∨ ¬x2)

Fact: symmetric assignments have the same truth value

▶ test only one element per orbit of symmetric assignments

Static symmetry breaking: add clauses to falsify all but one assignment per orbit
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Complexity of symmetry breaking

Observation: symmetry breaking predicate (usually) only depends on Aut(F )

Example

▶ symmetry group Aut(F ) = Sym(x1, x2, x3)

▶ symmetry breaking predicate P = x1 ≤ x2 ≤ x3, where x1 ≤ x2 := ¬x1 ∨ x2

Problem (Symmetry breaking)

Given G ≤ Sym(x1, . . . , xn), compute a symmetry breaking CNF predicate for G .

Weaker variant
Given G ≤ Sym(x1, . . . , xn), compute a symmetry breaking circuit for G .

▶ the circuit is even allowed to introduce additional variables
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Lex-leader constraints

Idea: compute a CNF predicate only true of the lex-
leader in each orbit of symmetric assignments

× ×
×

×

▶ in practice: incomplete lex-leader constraints

Theorem (Crawford et. al., 1997)

Computing for any formula F a predicate only true of the lex-leader in each orbit of
symmetric assignments is NP-hard.

This also holds for

▶ restricted classes of groups [Luks-Roy, 2004]

▶ orders similar to lex-leader [Katsirelos et. al. 2010, Walsh 2020+]

5 / 13



Beyond lex-leader

▶ wreath symmetries using the global cardinality constraint
together with lex-leader constraints [Flener et. al. 2009]

▶ constraints for graph problems similar to nauty [Codish et. al. 2016]

▶ minimal SAT symmetry breaking constraints for small groups [Heule 2019]

Goal
Complexity classification for computing symmetry breaking predicates

▶ for groups, and

▶ independently of the method to choose representatives.

Questions

▶ How does symmetry breaking relate to problems such as graph isomorphism?

▶ Find a general strategy to show hardness.
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Complexity landscape of graph isomorphism

Problem (String canonization)

Given G ≤ Sym(n) and σ ∈ {0, 1}n, find a
canonical representative in the orbit of σ (consistent
among all possible inputs).

Problem (Graph canonization)

Given a graph Γ, compute the canonical
representative in the isomorphism class of Γ
(consistent among all possible inputs).

Problem (Graph isomorphism)

Given two graphs Γ1 and Γ2, decide whether Γ1 and
Γ2 are isomorphic.
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Complexity of symmetry breaking

Problem (Decision SCANON)

Given G ≤ Sym(n) and σ ∈ {0, 1}n,
decide whether σ is the canonical
representative in its orbit.

Problem (Decision GCANON)

Given a graph Γ, decide whether Γ is
the canonical representative in its
isomorphism class.

SCANON

GCANON

GI

D-SCANON

D-GCANON

SymBreak
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Quasipolynomial bound

SCANON

GCANON

GI

D-SCANON

D-GCANON

SymBreak

Theorem (Babai, 2016)

SCANON can be solved in quasipolynomial time.

Consequence: use this there is a quasipolynomial time algorithm to produce a
symmetry breaking circuit of quasipolynomial size
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Barriers for symmetry breaking

SCANON

GCANON

GI

D-SCANON

D-GCANON

SymBreak

∈ NP

∈ coNP

∈ P
(for a group family)

Theorem (Anders-B.-Rattan, 2024)

D-GCANON ∈ NP implies GI ∈ coNP. Which is a major unsolved problem!

Strategy for showing hardness: given a symmetry breaking circuit for a group family,
use it to show D-GCANON ∈ NP.
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Row-column symmetries and Johnson symmetries

1
2

3
4

5

1,2

1,3
1,4

1,5

2,3
2,4

2,5

3,4

3,5
4,5

Theorem (Anders-B.-Rattan, 2024)

Suppose that a symmetry breaking circuit for row-column symmetries or proper
Johnson symmetries can be efficiently computed. Then GI ∈ coNP.
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Outlook: group-based complexity classification

quasi-polynomial circuit

“easy”

|G | ≤ poly(n)

automorphism

groups of trees

Sn

row-interchangeability

P

Slog n × Slog n

|G : H| ≤ poly(n),

where H hard

?

“hard”

row-column

symmetry

proper Johnson

|H : G | ≤ poly(n),

where H hard

P → GI ∈ coNP
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Muchas gracias - thank you!

SCANON

GCANON

GI

D-SCANON

D-GCANON

SymBreak

∈ NP

∈ coNP

∈ P
(for a group family)
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Advertisement

https://github.com/markusa4/satsuma
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