

Quentin Cappart

Enhancing constraint programming
with machine learning

Current challenges and future opportunities

CP 2024 - Girona

LearningReasoning

IntuitionAdaptation

Human intelligence versus artificial intelligence

2

Learning

Reasoning

Intuition

Human intelligence Artificial intelligence

This connection is not yet established

Long-term research plan: building an AI with these connections

Adaptation

Goal: providing a better solving process for combinatorial problems

?

CP = model + propagation + search

Constraint programming as a unifying framework

3

Constraint programming can be a hosting technology for building this hybrid AI
My research hypothesis

+ learning

How learning can be used to enhance the efficiency of CP solvers ?

Huge
flexibility

Logical
reasoning

Leveraging
past knowledge

Following
an intuition

Quentin Cappart

Summary of the CP pipeline

4

Next node

Branching
Decision

Improved
Node

Logical Reasoning

Search
Node

SolutionSearchModelModelling

Combinatorial Problem

Each decisional step has the potential to be improved with learning

Quentin Cappart

Enhancing CP with learning

5

Next node

Branching
Decision

Improved
Node

Logical Reasoning

Search
Node

SolutionSearchModelModelling

Combinatorial Problem

Context: learning showed promising results for MIP (Gasse et al., Neurips 2019)

My first intuition: search is a good candidate as it heavily relies on imperfect heuristics

Consolidating argument: thanks to backtrack we can recover from bad predictions

My first research direction was to learn appropriate value-selection heuristic

(with the intent to go further by learning variable-selection heuristics)

⟨1,{}⟩

1 2 3 4

1 2 3 4

⟨4,{1}⟩

1 2 3 4

⟨2,{1,4}⟩

1 2 3 4

⟨3,{1,2,4}⟩

CP search with a learned heuristic on TSP

6

⟨0,{1,2,3,4}⟩ 4
1

2
3

0

⟨1,{4}⟩

Our current
position

Remaining customers

The ability to recover from bad decisions is fundamental for complete approaches

CP search with a learned heuristic on TSP

7

How can we build this predictive model (this magical crystal ball) ?

Challenge 1: we do not know what is the best choice (i.e., we do not have labels)

Challenge 2: difficult to represent a combinatorial problem in a proper way for learning

4
1

2
3

0

G, x
Instance partially solved

Variable to branch on

fΘ(G, x)

Θ

Predictive model

d ∼ D(x)

4
1

2
3

0

Value to branch on

Tackling the first challenge (Cappart et al., AAAI 2021)

8

Challenge 1: we do not know what is the best choice

Consequence: tricky to rely on supervised learning

Our initial proposition: leverage reinforcement learning instead

Main idea: unveiling the connections of RL with CP through dynamic programming

fΘ(G, x)

Θ

State

Environment Agent

Action

⟨G, x⟩

d :

Reward

Prioritize feasibility THEN quality

A first proof of concept (Cappart et al., AAAI 2021)

9

Representing a problem as a graph, and feeding it to a graph neural network

Experiments: results showed that relevant branching decisions can be learned

These first results showed the promise in this direction and drove my research

Limitation: far below state-of-the-art results and limited to relatively small instances
Technical difficulty: not-so-efficient to embed learning into existing CP solvers

Challenge 2: how to represent a COP for learning?

(Marty et al., CP 2023)

Improvements in learning to branch

10

Seapearl: minimalist CP solver aiming to ease the integration of learning
Improvement: carrying out the learning inside the solver and not outside

(Chalumeau, Coulon et al., CPAIOR 2021)

Main idea: mainly simplifying the framework and downgrading our ambition!

Limitation 1: huge overhead in calling a GNN at each search node
Limitation 2: challenging to train (large resources, instability, etc.)

Improvement: forget optimality proof (too difficult with value-selection heuristics)

New goal: finding quickly good solutions (redefining the reward function)

Limitation: still a huge overhead in calling often the GNN

My current thoughts in learning to branch

11

Learning to branch comes with a LOT of challenges…

(2) Subjective choices in designing the reward (feasibility, quality, optimality)

(1) Overhead in calling a heavy model at each node (compared to cheap heuristics)

(3) A model good at the root node may be poor at deeper levels (distributional shift)

Here are few advices based on what worked the best for me

(1) Do not use learning at each branching step (too costly compared to heuristics)

(2) Call the model only at the top of the tree (where you likely have more samples)

(3) Proving optimality may be out-of-range (how to properly reward this?)

(4) Focus on finding quickly good solutions (in few nodes)

(5) Prioritize hybrid approaches (learning at the beginning, then use heuristics)

Going further with my thoughts…

12

Learning a value-selection heuristic may not be the best thing to do

Reinforcement learning may not be the best method for improving CP

Argument 1: much harder to train than supervised learning

Argument 2: indirectly require an unknown label (reward is an approximation of it)

Ok, but what do you propose then ?

What about learning a variable-selection heuristic for CP ?

My intuition: we will probably have similar challenges than for the value-selection

Note: please only see this as my personal opinion, and not as an irrevocable truth :-)

Observation 1: learning is too costly and unstable to replace cheap heuristics

Observation 2: learning something does not always give practical improvements

Can we learn something else?

13

My main current research direction is to learn how to prune the search space
(Said differently, I plan to improve the quality of filtering)

Next node

Branching
Decision

Improved
Node

Logical Reasoning

Search
Node

SolutionSearchModelModelling

Combinatorial Problem

Types of propagation in a CP solver

14

But how to do that ? Propagation is mainly algorithmic

CP = model + propagation + search

Fix-point

Pure
algorithmic MDD

Cost-based
filtering

Consistency
(AC3, etc.)

Global
constraints

+

Some propagators relies on tricky-to-get information that we propose to learn

Other tools
(nogoods, etc.)

Cost-based filtering (Focacci et al., CP 1999)

15

Step 1: a valid relaxation is embedded into the global constraint

Step 2: the relaxed problem is solved to get a dual bound on the cost

Cost-based filtering leverages relaxation to improve the filtering of a constraint

Step 3: the bound is used to prune the search space

Filtered domains
Cost-based
Filtering

Solving
relaxation

Dual bound

Relaxed
constraintRelaxationConstraint

Domains

Lagrangian
Multipliers

Trick: the quality of the relaxation depends on Lagrangian multipliers

Bad news: determining the best values of the multipliers is generally costly

But what can we learn here ?

We propose to obtain the multipliers through self-supervised learning

Iterative process

Proof of concept on weightedCircuit constraint

16

Proof of concept that motivates us to extend the idea to other constraints

(CP 2024)

Types of propagation in a CP solver

17

Can we learn a more general bounding mechanism in CP ?

We extend the idea to learn multipliers to CP-based Lagrangian decomposition

CP = model + propagation + search

Fix-point

Pure
algorithmic MDD

Cost-based
filtering

Consistency
(AC3, etc.)

Global
constraints

+
Other tools

(nogoods, etc.)

Lagrangian
decomposition

max f(X1, X2, X3)
s.t. C1(X1, X2)

C2(Y2, Y3)

X1, X2, Y2, X3, Y3 ∈ ℕ+

Lagrangian decomposition (Guignard and Kim, 1987)

18

max f(X1, X2, X3)
s.t. C1(X1, X2, X3)

C2(X2, X3)
X1, X2, X3 ∈ ℕ+ Y2 = X2, Y3 = X3

max f(X1, X2, X3) + μ2 ⋅ (Y2 − X2) + μ3 ⋅ (Y3 − X3)

Lagrangian decomposition splits the problem into independent and easier subproblems

Step 1: each variable in each constraint is duplicated, except for the first constraint

Step 2: a constraint linking the values is added for each new variable

Step 3: these constraints are moved into the objective function with a penalty term

Again, we have Lagrangian multipliers, but in a more generic way than before

Lagrangian decomposition (Guignard and Kim, 1987)

19

Solving this relaxed problem will give a dual bound

max f(X1, X2, X3) + μ2 ⋅ (X2 − Y2) + μ3 ⋅ (X3 − Y3)
s.t. C1(X1, X2, X3)

C2(Y2, Y3)
X1, X2, Y2, X3, Y3 ∈ ℕ+

ℬ(μ2, μ3) ={
But, is it easy to solve ?

Observation: by construction, each constraint has its own set of variables

Consequence: each constraint can be solved independently

max (f(X1, X2, X3) + μ2 ⋅ X2+μ3 ⋅ X3)
s.t. C1(X1, X2, X3)

X1, X2, X3 ∈ ℕ+

ℬ(μ2, μ3) = s.t. C2(Y2, Y3)
Y2, Y3 ∈ ℕ+

max (− μ2 ⋅ Y2 − μ3 ⋅ Y3)
+

Given some multipliers, we can obtain a bound by solving several subproblems

Lagrangian decomposition in CP (Hà et al. CP 2015)

20

max (f(X1, X2, X3) + μ2 ⋅ X2+μ3 ⋅ X3)
s.t. C1(X1, X2, X3)

X1, X2, X3 ∈ ℕ+

s.t. C2(Y2, Y3)
Y2, Y3 ∈ ℕ+

max (− μ2 ⋅ Y2 − μ3 ⋅ Y3)
ℬ(μ2, μ3) = +

How to set the values of the multipliers ?

Initialization: we set the multipliers to an arbitrary value
Step 1: we solve all subproblems with these values (we get a dual bound)
Step 2: we update the multipliers with sub-gradient (we improve the bound)

Dual bound

Solving SP1

Solving SP2

COP

⟨μ2, μ3⟩

ℬ(μ2, μ3)

μ3 = μ3 + α ⋅ (X3 − Y3)
μ2 = μ2 + α ⋅ (X2 − Y2)

Main loop: we repeat steps 1 and 2 for x iterations

X1, X2, X3

Y2, Y3

We propose a self-supervised learning approach to compute them

Learning multipliers for Lagrangian decomposition

21

ℬ(μ2, μ3)Dual bound

Solving SP1

Solving SP2

COP

⟨μ2, μ3⟩ μ3 = μ3 + α ⋅ (X3 − Y3)
μ2 = μ2 + α ⋅ (X2 − Y2)

This process is very costly as it requires solving few subproblems at each iteration

Step 1: multipliers are now obtained by a differentiable predictive model

Step 2: the model is trained end-to-end by differentiating the bound

Intuition: the optimisation process is carried out offline during a training phase

∇Θℬ(μ2, μ3)fΘ : COP → ⟨μ2, μ3⟩

Learning multipliers for Lagrangian decomposition

22

∇Θℬ(μ)

ℬ(μ2, μ3)Dual bound

Solving SP1

Solving SP2

COP

⟨μ2, μ3⟩

fΘ : COP → ⟨μ2, μ3⟩

Step 1: we use the chain-rule to uncover dependencies

=
∂ℬ(fΘ(COP))

∂μ
×

∂μ
∂Θ

Step 2: right-term is a simple backpropagation in the predictive model

∂ℬ(fΘ(COP))
∂μ

∂μ
∂Θ

Step 3: left-term reuses the initial sub-gradient expression
Training: gradient descent on training instances (no label and no reward required)

= (X − Y) ×
∂μ
∂Θ

How to compute the gradient of this bound ?

Qualitative results

23

Observation 1: simple subgradient requires a lot of iterations to find good bounds

Number of iterations for the sub-gradient

O
pt

im
al

ity
 g

ap
 (

%
) - Simple subgradient

- Learning alone
- Learning + SG

Size: 100 items

Dimension: 5 constraints

Multidimensional knapsack

Metric: quality of the dual bound obtained at the root node

Observation 2: learning alone manages to get directly good bounds

Observation 3: learning to initialize sub-gradient quickly gives better bounds

Our results showed both the interest of learning alone or with sub-gradient

±40 minutes with 4100 nodes

±46 minutes with 146000 nodes

±18 minutes with 2100 nodes

My current thoughts in learning to bound

24

I think that learning to bound in CP is a promising direction

(2) Lagrangian relaxation (or decomposition) ensures the validity of the bound

(1) The lack of generic relaxation is a shortcoming of CP (compared to MIP solvers)

(3) Learning can fully replace the subgradient (less filtering but cheaper)

(4) Learning can also only initialize subgradient (better filtering but more expensive)

But there are still questions and challenges to address…

(5) Results are encouraging in terms of execution time (not the case for branching)

(1) Which predictive model should we use? (is GNN a right choice?)

(3) How to handle problems with only few representative instances?

(2) Can we have a generic representation of any COP (Boisvert et al., CPAIOR 2024)

Conclusion with my final notes

25

CP can be enhanced by learning in many ways…

Constraint acquisition
Learning user preferences
Modeling with LLMs

My take-home messages
(1) Learning something meaningful does not always result in improved performances

(2) Prefer to use learning for replacing costly operations instead of cheap ones

Learning value-selection
Learning variable-selection

Learning for cost-based filtering
Learning with Lagrangian decomposition

(3) Promising research direction, but a lot of challenges to handle for a practical use

Next node

Branching
Decision

Improved
Node

Logical Reasoning

Search
Node

SolutionSearchModelModelling

Combinatorial Problem

Many thanks!!

26

Reference list (work we carried out)

27

Learning to branch
❖ Cappart, Q., Moisan, T., Rousseau, L. M., Prémont-Schwarz, I., & Cire, A. A.

 Combining reinforcement learning and constraint programming for combinatorial optimization. [AAAI 2021]

❖ Chalumeau, F., Coulon, I., Cappart, Q., & Rousseau, L. M.
 Seapearl: A constraint programming solver guided by reinforcement learning. [CPAIOR 2021]

❖ Marty, T., François, T., Tessier, P., Gautier, L., Rousseau, L. M., & Cappart, Q.
 Learning a Generic Value-Selection Heuristic Inside a Constraint Programming Solver. [CP 2023 - distinguished paper]

Learning to bound
❖ Cappart, Q., Bergman, D., Rousseau, L. M., Prémont-Schwarz, I., & Parjadis, A.

 Improving variable orderings of approximate decision diagrams using reinforcement learning. [IJOC 2022]

❖ Parjadis, A., Cappart, Q., Dilkina, B., Ferber, A., & Rousseau, L. M.
 Learning Lagrangian Multipliers for the Travelling Salesman Problem. [CP 2024 - Best ML paper award]

❖ Dabert, D., Bessa, S., Bourgeat, M., Rousseau, L.M., Cappart, Q.
 Learning Valid Dual Bounds in Constraint Programming [ArXivPreprint 2024]

Learning to model and graph neural networks

❖ Barral, H., Gaha, M., Dems, A., Côté, A., Nguewouo, F., & Cappart, Q.
 Acquiring Constraints for a Non-linear Transmission Maintenance Scheduling Problem. [CPAIOR 2024]

❖ Boisvert, L., Verhaeghe, H., & Cappart, Q.
 Towards a Generic Representation of Combinatorial Problems for Learning-Based Approaches. [CPAIOR 2024]

❖ Cappart, Q., Chételat, D., Khalil, E. B., Lodi, A., Morris, C., & Veličković, P.
 Combinatorial optimization and reasoning with graph neural networks. [IJCAI 2021, JMLR 2023]

Reference list (other related works)

28

Learning to branch (also in MIP)
❖ Khalil, E., Le Bodic, P., Song, L., Nemhauser, G., & Dilkina, B.

 Learning to branch in mixed integer programming. [AAAI 2016]

❖ Gasse, M., Chételat, D., Ferroni, N., Charlin, L., & Lodi, A.
 Exact combinatorial optimization with graph convolutional neural networks. [NeurIPS 2019]

❖ Song, W., Cao, Z., Zhang, J., Xu, C., & Lim, A.
 Learning variable ordering heuristics for solving constraint satisfaction problems. [EAAA 2022]

Foundations of our work on learning to prune

❖ Guignard, M., & Kim, S. Lagrangean decomposition: A model yielding stronger Lagrangean bounds. [Math. Prog. 1987]

❖ Focacci, F., Lodi, A., & Milano, M. Cost-based domain filtering [CP 1999]

❖ Hà, M. H., Quimper, C. G., & Rousseau, L. M. General bounding mechanism for constraint programs. [CP 2015]

Learning dual bounds (only outside CP?)

❖ Abbas, A., & Swoboda, P. Doge-train: Discrete optimization on gpu with end-to-end training. [AAAI 2024]

❖ Deng, Y., Kong, S., Liu, C., & An, B.
 Deep attentive belief propagation: Integrating reasoning and learning for solving constraint optimization problems. [NeurIPS 2022]

❖ Bergman, D., Cire, A. A., & van Hoeve, W. J. Improved constraint propagation via lagrangian decomposition. [CP 2015]

❖ Held, M., & Karp, R. The traveling-salesman problem and minimum spanning trees [Operations Research 1970]

Please reach me if you know other works using learning to get dual bounds :-)

Quentin Cappart

Research group: corail-research.github.io
Personal page: qcappart.github.io

Email: quentin.cappart@polymtl.ca

Next node

Branching
Decision

Improved
Node

Logical Reasoning

Search
Node

SolutionSearchModelModelling

Combinatorial Problem

Slides: QR code (or via my personal page)

http://corail-research.github.io

Learning Lagrangian Multipliers for the TSP

30

WeightedCircuit(X, G, d) : ensure that variables X form a TSP tour in G of cost ≤ d

1-tree relaxation(X, G) : allows the TSP to go twice in a specific node
Step 1: ensure that variables X form a minimum spanning tree in G∖{v1}

Step 2: link the remaining node v1 to the tree with the two cheapest edges

Optimal TSP cost: 62 Relaxation cost: 50

We have here a example of how a specific constraint can be relaxed

Learning Lagrangian Multipliers for the TSP

31

Relaxation cost: 50

Nice property 1: the optimal TSP tour is invariant under this perturbation

The bound is not very tight, could we improve it ?

Main idea: perturbate the cost of each edge with values called Lagrangian multipliers
Lagrangian multiplier: value associated with each node

μ2 : 4

μ3 : 0

Perturbation: change the cost of each edge based on the multipliers of its nodes

Lagrangian
Multipliers

c′ u,v = cu,v + μu + μv
c′ 2,3 = c2,3+μ2 + μ3

9 = 5+4 + 0 Relaxation cost: 59

Nice property 2: better bounds generally result in a much better filtering

⟨μ1, μ2, μ3, μ4, μ5⟩

Filtered domains
Cost-based
Filtering

Learning Lagrangian Multipliers for the TSP

32

Held and Karp, 1970: proposed an iterative algorithm for that

But how can we find good values for the multipliers ?

Bad news: the iterative adjustment of the multipliers is computationally expensive

WeightedCircuit

Observation: replacing HK process with learning was not successful

Idea: use a GNN to predict multipliers (one per node) from a TSP instance
Results: better filtering achieved on random and symmetric TSPs

Parjadis et al. (CP 2024): use learning to initialize the multipliers

1-tree relaxation

fΘ(G, x) : ⟨μ1, …, μn⟩

Solving
relaxation

Dual bound

Relaxed
constraint

Lagrangian
Multipliers

RelaxationConstraint

Domains

Held-Karp iterative process

