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Reasoning

A process
• “the process of thinking about something in a logical way in order to form a conclusion or 

judgment” (Britannica)
• “the drawing of inferences or conclusions through the use of reason” (Merriam-Webster)

Not just the output of that process

”reason” and “logical way” are human-related concepts -- human system 2



Reasoning 
tasks and 

beyond

Reasoning tasks
• Humans need System 2 (reasoning) to solve them

• Ex. Complex arithmetic
• Possibly in combination with experience (System 1)

• Ex.: language translation 

Non-reasoning tasks
• Humans just use System 1 

• Ex.: face recognition



Reasoners and reasoner simulators

A reasoner performs the reasoning process 

For each input, it generates output using that process
Usually static, does not need data
Ex.: symbolic theorem prover, planner
Evaluation: do they use correctly the reasoning rules?

Reasoner simulator: a system that approximates 
the input/output behavior of a reasoner

For reasoning tasks
Ex.: LLM

Reasoners do not need data to do their job Evaluation: do they use the reasoning rules?

Reasoner simulators exploit data/examples to be 
good simulators of the I/O behavior of a reasoner

But many reasoning tasks have an infinite space, so data is not enough to be a 
perfect simulator
Evaluation: test on datasets for human reasoning tasks



Can ML/LLM reason?

• It depends on the definition of reasoning 
people use

• Yes, because they perform well on 
reasoning tasks
• Focus on reasoner simulators

• No, because they do not use logical rules 
and they make mistakes
• Focus on formal reasoners



Is one better than the other one?

Depending on the use case scenario, one may want to employ a formal reasoner 
or a reasoner simulator

Formal reasoner

• When we care about 100% correctness and consistency
• When we need a trace of the reasoning rules used to generate the output

Reasoner simulator

• When we don’t care how the output is generated
• When we don’t care that the system is always consistent or correct



Can they help each other?

Reasoner simulators may be 
incorrect

They can be combined with a reasoner for 
increased correctness, consistency, and reduced 
resource consumption
Ex. Plan-SOFAI, Rao’s approach of LLMs modulo

Formal reasoners do not have a 
model of the world

Unless we explicitly provide it to them
They can be combined with reasoner simulators to 
improve their flexibility and performance
Ex.: Alpha-geometry



AI past and 
present

First AI phase: High-level cognitive capabilities (reasoning)

• Logic, planning, search, optimization
• Pros: mimicking human high-level reasoning capabilities 
• Cons: needs controlled working environments

Second AI phase: Data-driven approaches (reasoner 
simulators)
• Making sense of raw data to make predictions and classification
• Pros: perception, many applications, directly linked to real world
• Cons: lack of interpretability/explainability, data quantity and quality 

issues, hidden bias, lack of generalizability and robustness

Current AI phase: Reunification

• Combine data-driven and symbolic logic-based approaches
• To make the next big advancement in AI capabilities

• Both autonomous agents and decision-support systems
• Also to address some of the ethics issues



Agreement on “what” but not on “how”

• The third AI summer, AAAI 2020 talk by 
Henry Kautz, Feb. 2020
• Neurosymbolic AI: The 3rd wave, L. 

Lamb and A. D’Avila Garcez, Dec. 2020
• Inductive biases for deep learning of 

higher-level cognition, A. Goyal and Y. 
Bengio, Feb. 2021
• AI 100 report, Sept. 2021
• Machine Learning and Logic: Fast and 

Slow Thinking, Moshe Vardi, 2022



Look (again) 
at the human 
mind and 
brain

Inspiration from neuroscience and 
cognitive science
• Neuroscience can help identify effective AI 

structures for problem solvers
• Cognitive science can inspire AI architectures for 

solvers’ combination, arbitration, and governance

Can it succeed now?

• Better knowledge of how mind and brain work
• More mature AI technology

• Including more data, computing power, and 
applications



Thinking Fast 
and Slow, or 
System 1 and 
System 2



System 1 can perform cognitively easy tasks

• Local and parallel
• Handles and exploits causality to build approximate models of the world

System 2 handles more complex tasks

• Requires all our attention
• Global and sequential

System 2’s search for solutions is usually supported by System 1’s 
heuristics

Skill learning: some tasks transfer from System 2 to System 1 over 
time

• Not all (ex.: complex arithmetic operations)

Cognitive control

• System 1 reacts, System 2 may override it

Thinking Fast 
and Slow, or 
System 1 and 
System 2



Daniel 
Kahneman on 
current AI 
(Dec. 2023)

“Since the triumphs of machine learning in 2012, 
artificial intelligence produces solutions by the 
opaque operations of large neural net, which shares 
many features with the automatic intuitions of 
System 1. The integration of intuition and reasoning 
in artificial intelligence was not achieved during the 
first decade of the machine-learning era."



Thinking fast 
and slow in 
AI: our 
approach

A multi-agent architecture -- SOFAI

System 1 solvers
• Relying on past experience and model of the world
• Not reasoning on the problem
• Reacting to arrival of new problem instance
• Generating a candidate solution

System 2 solvers
• Reasoning on the given problem
• Computational complexity dependent on the size of input
• Activated by meta-cognition
• Generating solution

Model/solver updater
• Acts in background to update models of world, self, and others 



The (basic) SOFAI architecture
• Fast solvers: only based on past experience

• Slow solvers: reasoning about the problem instance

• Metacognition: 
• Real-time: decides which solver to use
• Offline – reflective: counterfactual S2 comparison 

and possible adjustment of MC parameters
• Offline – learning: solvers/models update

• Fast solvers act independently, slow solvers need to be 
triggered by MC

• Note: Inspiration from theories of the mind, rather 
than the brain



Two phases 
for Real-time 
MC

Input: System 1 solution and confidence
Output: adopt System 1 solution or activate System 2
Goal: avoid unnecessary costly reasoning processes unless the additional 
expected reward gain is higher than the expected higher cost

MC1

• Enough resources for MC1 and MC2? If not, adopt S1’s solution
• Enough experience accumulated? If yes, adopt S1’s solution
• S1 confidence higher than expected reward? If yes, adopt S1’s solution

MC2

• Exploration: with small probability, choose randomly between S1’s solution and S2’s activation
• Expected reward gain for S2 solver > expected higher cost of using S2 è activate S2, 

otherwise adopt S1’s solution



SOFAI vs Main Neuro-symbolic Approaches

• Full integration
• Logical Neural Nets, Tensor Neural Nets, …

• Combination of neuro- and symbolic components, decided by 
the researchers
• Ad hoc for each specific task

• SOFAI adopts the second approach but the metacognition 
component provides the governance



Expected 
SOFAI Behavior

• Make superior decisions than each of the 
solvers independently

• Improve over time 
• Internalize skills (from S2 to S1)
• Exercise cognitive control in high-risk 

scenarios
• Leverage existing solvers
• Adapt to the solvers’ competence/capabilities



Symbolic planning



SOFAI for planning
• S1 solver: an LLM-based planner (Plansformer)

• S2 solvers: existing classical symbolic planners, 
as FD (Fast Downwards) and LPG (Local Search 
for Planning Graphs with Action Costs)

• Metacognition: 
• Only the real-time version
• Includes plan validation



Capabilities of LLMs for Plan Generation 
– experimental results
• To what extent can different LLM architectures solve planning problems?

• What pre-training data is effective for plan generation?

• Does fine-tuning and prompting improve plan generation?

• Are LLMs capable of generalization?

23

Encoder-decoder and decoder-only models show better plan generation

LLMs pre-trained on programming code are better at plan generation

Fine-tuning is better than prompting

Incapable of generalization (length, object names, new domains)

Pallagani et al. "On the prospects of incorporating Large Language Models (LLMs) in automated planning and scheduling (aps)." ICAPS (2024)



Plan-SOFAI Experimental Results

• FD has the best optimality (+0.00%) but high overall resource consumption (8.479 sec)

• LPG is the most efficient (0.675 sec) but has less-than-ideal optimality statistics (+23.68%)
• PF solves less problems (402) than FD and LPG but many (386) are optimal and time is constant (2.079 sec)
• Among the SOFAI instances:

• PS-MIX represents the most balanced trade-off among all the analyzed techniques
• 490 solved problems, 2.199 sec, +1.13% optimality

• PS-LPG best if we care less about optimality (all problems solved, 434 optimal)



SOFAI for 
Constrained 
Grid Navigation
• Constraints over cells and moves (actions)
• Goals:

• Maximize reward, minimize time and length
• High risk aversion: minimize constraint violation

• Solvers:
• S1 solver: RL agent, trained on past trajectories and their 

reward
• S2 solver: MDFT (deliberate decision-making)

• Meta-cognition:
• Real-time MC: two-phases choice between S1 and S2
• Reflective (counterfactual) MC: compare past trajectories 

with simulated S2-only ones, and adjust MC parameters
• Learning MC: update model of self and S1 solver

• Five versions of S1 solver, with varying degrees of randomness



SOFAI is better than using S1 or S2 
independently 

Reward Time Length



How: SOFAI adapts to the competence of the S1 solver

• SOFAI adapts to the capabilities of 
the S1 solver
• Five versions of S1 solver, from 

completely random to always 
choosing move with best 
expected reward

• Reward is (almost) 
independent 

• S1 is used less if SOFAI realizes 
that it is not reliable

• Over time, SOFAI learns to 
calibrate the use of S1 and S2 to 
maintain a stable trajectory quality

length

reward

time



How: SOFAI’s skill learning (from mostly S2 to mostly S1)



How: SOFAI cognitive control 
(more cautious in the face of high risk aversion)



A new look at 
the basic SOFAI 
architecture

• MC evaluates the S1 
candidate solution: if not 
acceptable, calls the S2 
solver

S1 solution evaluation

S1/S2 assessment and 
choice

S1 solver

S2 solver

Return S1 solution

Problem 

instance

yes

no

S2

S1

S1 sol

Return S2 solution

Real-time MC



The generalized 
SOFAI 
architecture

• Main change: use the S1 
solver more than once, 
before calling the S2 solver

• S1 solver: LLM

• MC to provide feedback on 
LLM’s candidate solution

• Leverage S2 solver to provide 
examples to the LLM
• Not just to solve the entire 

problem instance

S1 solution 
evaluation

S1 vs S2, 
Improvement 

trend, skill learning 
evaluation

Response choice 
(feedback/exam

ples)

Feedback 
generation

New prompt 
generation

S1 solver

S2 solver

Return S1 solution

Problem 
instance

yes

no

no

yes

examples

S1 sol

examples 
request

Return S2 solution

Real-time MC



Generalized 
SOFAI for 

graph coloring

• S1 solver: an LLM (Mistral 7B )
• S2 solver: DSatur Algorithm 

• Not an optimization algorithm, may use more colors than needed

• Real-time metacognition
• Validates the color assignment generated by the LLM
• Provides feedback: Right/Wrong, Single Mistake, All 

Mistakes
• Example types: None, Pair, Triangle, Pair and Triangle, 4-Clique
• At most 5 calls to the S1 solver before calling the S2 solver

• Experimental setting:
• Graph sizes : 5-9 nodes

• Edges generated randomly to connect all nodes and add some 
additional edges

• 100 graphs per experiment
• 75 different experiments, combining 3 feedback 

types, 5 example types, and 5 graph sizes



LLM prompt

Graph Coloring Problem: You are provided with an undirected 
graph. The graph is represented by vertices and edges 
connecting them. In the examples below, vertices are labeled 
with letters (e.g., A, B, C), and edges are represented by pairs of 
vertices (e.g., A - B means there is an edge between vertex A and 
vertex B). Use the actual graph provided below for solving the 
problem: 
R - Z 

X - S 
Y - R 

Z - X 
You can use at most 2 colors to generate a valid coloring of this 
graph such that no two adjacent vertices share the same color. 
ONLY OUTPUT the color assignments for each vertex in the 
following format: (vertex color). Example format of the output 
(Note: A, B, C are just examples): (A 1) (B 2) (C 1) 

Use the vertex names from the actual graph content above when 
generating your solution.

Note: upper bound on 
number of colors given 
by the S2 solver.



LLM and 
Validator 

Output

Response from LLM/ Input to Validator: 

(R 1) (Z 2) (X 1) (S 2) (Y 1)

Validator Output/ Return prompt: (Feedback type single 
mistake and example type triangle)
The coloring is not correct. Feedback: Vertices R and Y are 
adjacent and share the same color 1.  

For example, consider a graph coloring problem for three 
nodes, A, B, and C, all connected to each other (forming a 
fully connected subgraph, or clique). To color these nodes, 
assign different colors to each one. For instance, A can be 
colored with color 1, B with color 2, and C with color 3. This 
ensures that no two adjacent nodes share the same color. 
Example: (A 1) (B 2) (C 3)



CSP-SOFAI demo screenshot



CSP-SOFAI demo Screenshot



Baseline – System 1 Only

The LLM (S1 solver)in 
one shot can solve at 
most 25% of the 
coloring problems.



SOFAI Success Rate – Across Graph Sizes

• SOFAI has success rate of 100%, since it will call S2 
solver after 5 unsuccessful iterations of the S1 solver

• With graph size 5, SOFAI will return the correct 
solution just by using the LLM 60% of the times, and 
calling the S2 solver 40% of the time

• More constraints make it more difficult for the LLM, 
until (size 9) this is compensated by the available 
colors



Understanding the trend

• Graph sizes from 5 to 8: Reduction in both Edge Density and Effective Chromatic Number (less constraints but also less 
colors)

• Graph size 9: Rise in both Edge Density and Effective Chromatic Number (more constraints but also more available colors)



Error Rate of the S1 solver, by Example type 
and Feedback Type

Providing all mistakes as 
feedback helps the LLM 
most, then single 
mistake, then just 
right/wrong.



Number of S1 iterations, by Feedback Type 
and Example Type

Less iterations if feedback on mistakes, compared to just 
right/wrong feedback, and more complex examples. 



Time Comparison – S1 vs S2

S1 solver time rather stable, S2 solver time grows 



Human decision support: introducing 
friction when needed to avoid over-trust

• Nudges to use S1: non-educational nudges

• Ex.: images on cigarette packs

• Stronger impact on behavior

• Nudges to use S2: educational nudges

• Ex.: nutrition label

• Impact mostly on beliefs



Human-machine 
framework: five 
interaction 
modalities



Validating hypothesis 
and research questions
• RQ1: Are AI nudges generating a significant anchoring effect?

• Yes

• RQ2: Is the AI nudge anchoring effect comparable to the human 
one?
• Yes, but AI nudging is weaker

• RQ3: Are AI nudges accepted by humans as a human-machine 
collaboration mechanism?
• Yes, by a large majority (at least 82%)

• RQ4: Are System 1 AI nudges accepted more or less than System 2 AI 
nudges?
• It depends on the domain (health, music streaming online purchases, 

financial wellbeing)

• RQ5: Are FASCAI’s decisions better than humans’ alone or AI’s alone?
• RQ6: In the FASCAI instance, are humans learning over time, more 

than if they are asked to make decisions by themselves?
• RQ7: Is human agency preserved in FASCAI?

0 10 20 30 40 50 60 70

movie streaming

online purchases

health (blood glucose food
recommendations)

financial advisor

ACCEPTANCE OF AI NUDGES
none MC nudges S2 nudges S1 nudges



Summary and ongoing work
• SOFAI support the combination of S1 and S2 solvers
• The S2 solver helps the S1 solver with examples
• MC helps the S1 solver with feedback 
• Working on …

• S1 solver to help the S2 solver with contextual information
• Problems for which the S2 solver is very costly 
• Examples generated by S2 solver on smaller problem instances compared to the one 

that needs to be solved
• Ex.: in blocksworld planning, put all blocks on the table, or pick just one goal 

instead of all
• Open-source SOFAI architecture where one can plug in S1 and S2 

solvers, solution evaluators, example generators



Project Web Site - 
https://sites.google.com/view/sofai/home 

https://sites.google.com/view/sofai/home


Thanks!


