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= What is the quickest route to go from A to B?
= A very simple CP problem if the traffic congestion is known.

= But as the future traffic congestion is unknown, it must be estimated using contextual features.
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(Combinatorial) Optimization (CO)

minye ¢ () f (¢, w)

f: objective function to be minimized

F:The set of feasible points

w: decision variable

= k: parameters, defining the set of feasible points(constraints)

= c:parameters, defining the objective function (cost parameter)

w*(c,k): a parameteric solution to the optimization for the parameter set (c, k)
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Solving a Single Instance of a Combinatorial Optimization
Problem

Known at the time of k Optimization
Solving the problem < Solver

w*(c, k)

For one problem instance, one can solve it using a CP solver (or MiP, SAT).

« Job-shop Scheduling Problem

» Portfolio Optimization Problem

« Vehicle Routing Problem

» Bipartite Matching Problem

« Bin Packing Problem
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Predict-then-Optimize (PtO) Problem

« The parameter (c, k) is not known at the time of solving the optimization problem.

Lol
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Asset Allocation for Portfolio Optimization Vehicle Routing with Unknown Customer Demands
(Predicting c) (Predicting k)

« Such problems are framed as stochastic optimization problem in the OR community.
[Birge, J. R., & Louveaux, F.]
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Predict-then-Optimize Problem Setup

* In PtO problems, the unknown parameter is predicted using contextual information (features).

ML - Optimization —
—> . - -

Predicted Pr‘eSCI“Ibed
X1 (c, k)¢ Decision

: Parameter
X, (c, k), lreinze o~ Optimization
- ML (e Solver
Predictor

Test/Deployment Time

Xn (L9

\ ' |
Training Data

(from past observations)

Decision
Error

(c,k)
True
Parameter

Latent Data

Generation _ - o
Process The focus is on minimizing decision error,

Standard Supervised ML Dataset Not prediction error
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Decision Error

= While Predicting only c:

* No uncertainty is associated with F, the feasible set
« The decision error is relatively easy to evaluate
I. Regret,
ii. Squared error between prescribed and true optimal decision

1 ] _ Regret =f(c,w*(6,fc)) — f(c,w*(c, k))

W_/
Objective value  Objective value
with if the true parameters
U UOul = I |:| the decision made  were known
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Allocation made using the predictions  Optimal Allocation if the returns were known

= While Predicting k: Post-hoc Regret2, Mismatch function3

2:Hu, X., Lee, J.C., & Lee, J. H.
3: Paulus, A., Rolinek, M., Musil, V., Amos, B., & Martius, G.
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Decision-Focused Learning: The Motivation

Cannot we minimize decision error by minimizing prediction error?

Different Prediction Error
but Same/Decision Error
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Decision-Focused Learning (for predicting ¢)

» Decision-focused learning (DFL)* directly trains the ML model to minimize the decision
error.

» Due to the recent success of gradient descent-based ML, most of the focus has been to
DFL using gradient descent.

7 ~ CO Solver
2> > > * (A . n —bw* é\ . s
7 Y — T i o B
N 1 RO Backpropagatin _
Nisvf/irk &o? N\ ’ dpL SRRl _dL |dw*(©) aCkpl‘gpLagatlng
d¢ d¢ dw*(¢) d¢ Tw @
X Training Data ¢, w0

4: Wilder, B., Dilkina, B., & Tambe, M.
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Challenges

If v, <vq; Choose Item 1
If v, > vq; Choose Item 2

ltem1 ltem 2

dw*(¢)

A

is zero almost

= For combinatorial optimization

w* (&) [— everywhere and does not exist at the transition points.
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Two DFL Approaches

« Differentiable Layer

« Surrogate Loss
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Linear Programs

mincTw
s.t. Aw=b;w =0

Linear Programs (LPs)

\

= The LP solution always lies at one of the vertices.
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Analytical Smoothing of LP

minc’x + A ||x]||? minc’x — 1Y Inx;

s.t. Ax =b;x =0 s.t. Ax =b;x =0

QP Smoothing Log Barrier Smoothing
(Wilder, B., Dilkina, B., & Tambe, M., AAAI 2019) Mandi, J., & Guns, T., Neurips 2020)
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Integer LP (ILP)
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Surrogate Loss

= This approach minimizes a differentiable surrogate loss te reduce expected regret,
as the derivative of regret is zero almost everywhere.
I I 1. I . I n

Feasible Points Feasible Points

t

1

Objective Value with ¢
Objecti

Contrastive Estimation (CE) [Mulamba, Mandi et al., lJCAI 2021]

Predict ¢ so that:

f(é,w*(c)) < f(e,w') yWw' eF
= f(&,w*(c)) < min, f(&,w') = f(&w* ()
Contrastive Loss: f(& w*(c)) — f(¢c,w*(8))

This idea has further been extended to develop learning-to-rank loss [Mandi et al, ICML 2022].
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Scalability of DFL

Solving the Optimization Problem in Each Epoch

0 n CO Solver /
—) A > . S * A\ ———— ..
> > . . . w™ (¢
EAN e C———- Jw*(@) € argminyerf(W; ) - _. - - Decision
RV Loss (L)
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X cC, W* (C)
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Scalability of DFL

Proxy Solver

w*(&)

Decision/ Surrogate
Loss (L)

A

c,w*(c)
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Solution Caching
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[Mulamba, Mandi et al., IJCAI 2021]

Replacing Solving Optimization problem with a lookup in finite dimensional cache.

Solution caching proves out to be effective in other domains such as planning [Mandi et al., ECAI 2024].
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Conclusion

Two broad categories of

i.  Differentiable optimization by smoothing
ii. Differentiating surrogate loss function

Noise contrastive estimation and learning-to-rank
have been used to devise surrogate loss function.

DFL generates predictions with lower regret compared to the

prediction-focused approach for predicting c.

(TR |

Solution caching proves out to be effective in addressing scalability.
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Looking Forward...

 Learning-to-Solve as an optimization proxy
« DFL for uncertainty in the constraints

* Risk-sensitive DFL

» Generalize DFL for related problem

« Real-world applications (more)
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Questions?
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