XCSP³ Competition 2024 – Results –

Gilles Audemard Christophe Lecoutre Emmanuel Lonca

CP'24

September 5, 2024

In a nutshell, the main ingredients of the complete tool chain we propose for handling combinatorial constrained problems are:

- PyCSP³: a Python library for modelling constrained problems see https://www.pycsp.org/
- XCSP³: an intermediate format used to represent problem instances while preserving structure of models see https://www.xcsp.org/

Why should you try $PyCSP^3/XCSP^3$?

- Mainstream Technologies Inside
- HiFi Compilation preserving the structure of models (in XCSP³)
- Quite compact and readable models
 - easy handling of data (from JSON): "one line is enough"

nPlanes, times, costs = data

- natural expressions of constraints (tables, automatas, ...)
- Educational interest (but can be useful for industry too)
 - 25 Jupyter notebooks for introducing 25 popular constraints
 - 34 Jupyter notebooks for gently introducing, step by step, models of classical combinatorial problems
- Stable/Mature Technology: any "integer problem" can be modelled
- Many resources
 - parsers: (on GitHub): C++, Java, Rust, and Python
 - repository with more than 340 models (and data); see https://pycsp.org/models
 - a very large number of series of instances

Purpose of Competitions

The goal of a competition is to:

- evaluate solvers in the same conditions
- collect publicly available benchmarks and data (results, traces, ...)
- identify good new ideas/techniques

Competitions should not be misunderstood:

- The results are not an absolute truth: they depend on the benchmark selection, experimental conditions, ...
- A competition is not limited to a ranking: rankings are just an over-simplified view, but still relevant to motivate authors
- Competitions must be driven by the community: benchmark submission/selection advices, suggestions for improvements, ...

Perimeter of Constraints (mainly, XCSP³-core)

For the standard tracks:

- intension, extension
- regular, mdd
- allDifferent, allDifferentList, allEqual, ordered, lex, precedence
- sum, count, nValues, cardinality
- maximum, minimum, element, channel
- noOverlap, cumulative, binPacking, knapsack
- circuit, instantiation
- slide

For the Mini-solver tracks:

- intension, extension
- allDifferent
- sum
- element

Tracks for the 2024 $\rm XCSP^3$ Competition

There are 4 Standard tracks and 2 Mini-solver tracks.

Problem	Goal	Exploration	Timeout
CSP	one solution	sequential	30 minutes
COP	best solution	sequential	30 minutes
Fast COP	best solution	sequential	3 minutes
Parallel COP	best solution	parallel	30 minutes

Table: Standard Tracks.

Problem	Goal	Exploration	Timeout
Mini CSP	one solution	sequential	30 minutes
Mini COP	best solution	sequential	30 minutes

Table: Mini-solver Tracks.

Computer Infrastructure

- The cluster was provided by CRIL and is composed of nodes with 2 quad-core Intel(R) Xeon(R) CPU E5-2643 0 @ 3.30GHz, each equipped with 32GiB RAM (24GiB for jobs).
- Each solver was allocated a CPU and 64 GiB of RAM, independently from the tracks.
- Timeouts were set accordingly to the tracks through the tool runsolver:
 - sequential solvers in the fast COP track were allocated 3 min of CPU time and 4.5 min of Wall Clock time,
 - other sequential solvers were allocated 30 min of CPU time and 45 min of Wall Clock time,
 - parallel solvers were allocated 4 CPU and 30 min of Wall Clock Time.

Scoring/Ranking

The number of points won by a solver S is decided as follows:

- for CSP, this is the number of times *S* is able to solve an instance, i.e., to decide the satisfiability of an instance
- for COP, this is, roughly speaking, the number of times *S* gives the best known result, compared to its competitors. More specifically, for each instance *I*:
 - if *I* is unsatisfiable, 1 point is won by *S* if *S* indicates that the instance *I* is unsatisfiable, 0 otherwise,
 - if S provides a solution whose bound is less good than another one (found by another competiting solver), 0 point is won by S,
 - if S provides an optimal solution, while indicating that it is indeed the optimality, 1 point is won by S,
 - if *S* provides (a solution with) the best found bound among all competitors, this being possibly shared by some other solver(s), while indicating no information about optimality: 1 point (BB1) is won by *S* if no other solver proved that this bound was optimal, 0.5 (BB2) otherwise.

Note that:

- the selection has been conducted by C. Lecoutre, which is why ACE is labeled *off-competition*
- one series (AircraftAssemblyLine) has been submitted

At the end:

- the selection of instances for the Standard tracks was composed of 200 CSP instances and 250 COP instances
- the selection of instances for the Mini-solver tracks was composed of 150 CSP instances and 155 COP instances

CSP Problems for the Main Track

CSP Problems	Global Constraints)
AverageAvoiding	allDifferent, minimum
FastMatrixMultiplication	lex, precedence, sum, table*
Fillomino	element, sum, table*
FRB	table
Hamming	lex, sum
HyperSudoku	allDifferent
MisteryShopper	allDifferent, channel, lex, table
Pentominoes	allDifferent, table
PoolBallTriangle	allDifferent
RotatingWorkforce2	cardinality, count, regular, sum
Soccer	allDifferent, sum, table
SocialGolfers	allDifferent, cardinality, lex, sum
SolitairePattern	table
Subisomorphism	allDifferent, table
Takuzu	AllDifferentList, sum
WordSquare	allDifferentList, element, table

COP Problems for the Main Track

COP Problems	Global Constraints
AircraftAssemblyLine	cumulative, noOverlap, sum
AztedDiamondSym	cardinality, sum, table*
BinPacking	binPacking, cardinality, nValues, lex, sum
Cargo	cumulative, element, noOverlap, sum
Charlotte	allDifferent, count, sum, table*
Drinking	sum, table
FoolSolitaire	element, table
LitPuzzle	sum
MaxDensOscLife	lex, sum, table*
Pyramid	allDifferent
RubiksCube	allDifferent, element
SameQueensKnights	sum
StillLife	sum, table
TestScheduling	cumulative, noOverlap, maximum
TravelingTournament	allDifferent, cardinality, element, regular, sum, table*
VRP_LC	circuit, cumulative, element, sum
WordGolf	element, sum
Wordpress	element, sum

Teams/Solvers (in alphabetic order)

- ACE (C. Lecoutre)
- BTD, miniBTD (M. Cherif, D. Habet, P. Jégou, H. Kanso, C. Terrioux)
- Choco (C. Prud'homme) Note: Choco-LCG not ready wrt the deadline of the competition
- CoSoCo (G. Audemard)
- CPMpy (T. Guns, W.Vanroose, T. Sergeys, I.Bleukx, J. Devriendt, D. Tsouros, H. Verhaeghe)
 cpmpy_mzn_chuffed, cpmpy_mzn_gecode, cpmpy_z3
 cpmpy_exact, cpmpy_gurobi, cpmpy_ortools
- Exchequer (M. Mariusz Lester)
- Fun-sCOP (T. Soh, D. Le Berre, H. Nabeshima, M. Banbara, N. Tamura)
- Nacre (G. Glorian)
- Picat (N.-F. Zhou)
- RBO, miniRBO (M. Sami Cherif, D. Habet, C. Terrioux)
- Sat4j-CSP-PB (extension of Sat4j by T. Falque and R. Wallon)
- Toulbar2 (D. Allouche et al.)

Available Resources:

- Full set of $\mathrm{XCSP^3}$ Instances
- PyCSP³ Models (and Data)
- Proceedings
- Dedicated website (Tables, Plots, Traces)

Solver	#solved	#SAT	#UNSAT
Picat	123	100	23
CPMpy_ortools	121	98	23
Fun-sCOP	114	94	20

Solver	Score	#Opt	#BB1	#BB2
CPMpy_ortools	145.5	101	38	13
Picat	128.0	111	14	0
🕈 CoSoCo	111.5	63	34	29

Solver	Score	#Opt	#BB1	#BB2
Y Picat	108.5	85	23	1
CoSoCo_fast	96.0	36	49	22
Choco	87.0	39	42	12

Parallel COP (250 instances)

Solver	Score	#Opt	#BB1	#BB2
CPMpy_ortools	195.5	116	78	3
Choco	110.0	64	35	22
Toulbar2	19.5	14	1	9

	Solver	#solved	#SAT	#UNSAT
8	CPMpy_mzn_chuffed	1 71	57	14
Š	miniBTD	58	46	12
8	Nacre	54	42	12

Mini COP (150 instances)

	Solver	Score	#Opt	#BB1	#BB2
8	Exchequer	65.5	46	19	1
Š	MiniRBO	57.0	24	27	12
8	Toulbar2	37.5	20	15	5
-	CPMpy_gurobi	37.5	26	10	3

Specific Zoom on COP Track 1/2

Proof-oriented Vision

Specific Zoom on COP Track 2/2

Search-oriented Vision

Take-away Message

CP solvers now can benefit from:

- solution(-based) phase saving (since 2017)
- three complementary robust variable ordering heuristics (since 2004, 2021 and 2023)

search, reborn!

https://www.cril.univ-artois.fr/XCSP24